U.S. DEPARTMENT OF COMMERCE

William M. Daley, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION D. James Baker, Administrator

NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SERVICE Robert S. Winokur, Assistant Administrator

JANUARY 1999 NUMBER 653 - Part I

Solar-Geophysical Data prompt reports

Data for November, December 1998 and Late Data

International Standard Serial Number: 0038-0911 Library of Congress Catalog Number: 79-640375 //r81

NATIONAL GEOPHYSICAL DATA CENTER

Michael S. Loughridge, Director Boulder, Colorado

Subscription information is on the inside back cover.

SOLAR-GEOPHYSICAL DATA

Number 653

(Issued in Two Parts)

Editor: Helen E. Coffey

Chief: Herbert W. Kroehl Solar-Terrestrial Physics Division

Staff: Edward H. Erwin

CONTENTS

PART I (PROMPT REPORTS)PageDETAILED INDEX FOR 19982DATA FOR DECEMBER 19983-43DATA FOR NOVEMBER 199845-159

PART II (COMPREHENSIVE REPORTS)PageDETAILED INDEX FOR 19982DATA FOR JULY 19983- 35

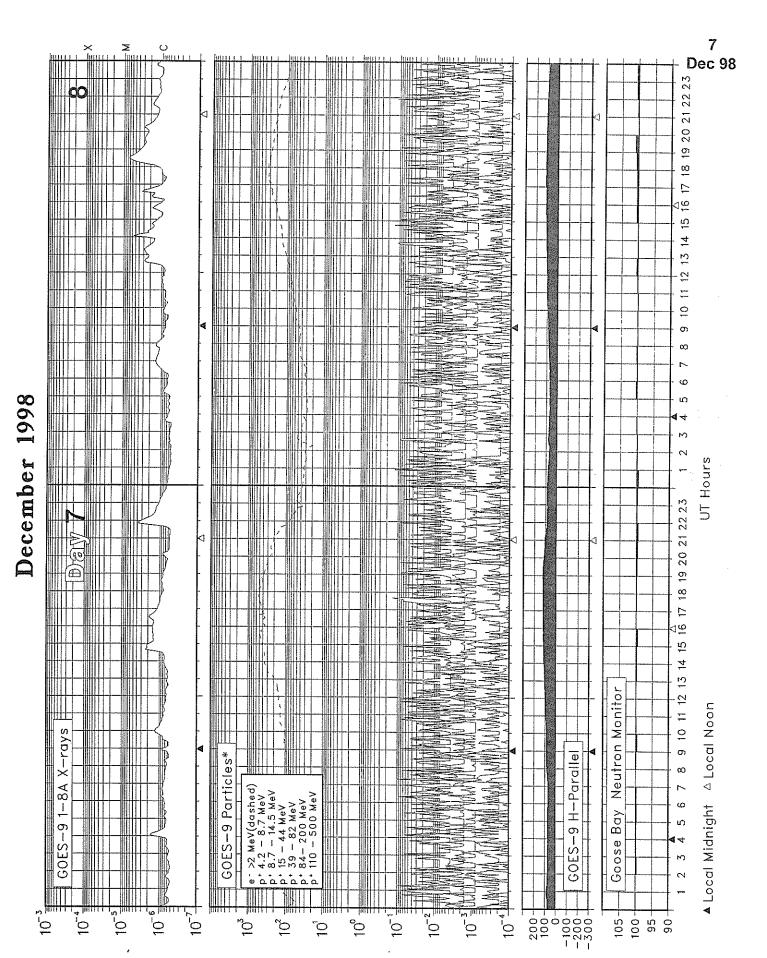
ETAILED INDEX OF OBSERVATIONS PUBLISHED IN SOLAR-GEOPHYSICAL DATA

ODE	KIND OF OBSERVATION	MAY 98	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	SOLAR AND INTERPLANETARY								
1	Sunspot Drawings	647A 46	648A 46	649A 50	650A 48	651A 46	652A 54	653A 52	
2aa	International Provisional Sunspot Numbers	646A 25	647A 25	648A 26	649A 26	650A 25	651A 25	652A 24	653A 27
2c	American Sunspot Numbers	646A 25	647A 25	648A 26	649A 26		651A 25	652A 24	653A 27
3a	Mt. Wilson Magnetograms	647A 46	648A 46	649A 50	650A 48	651A 46	652A 54	653A 52	
3b	Sunspot Mag Class and Regions	647A104	648A101	649A109	650A108	651A101	652A108	653A106	
.3c	Kitt Peak Magnetograms	647A 46	648A 46	649A 50	650A 48	651A 46	652A 54	653A 52	0504 44
.3d	Mean Solar Magnetic Field (Stanford)	646A 39	647A 35	648A 35	649A 39	650A 37	651A 35 652A 54	652A 39 653A 52	653A 41
.3e .4	Stanford Magnetograms H-alpha Filtergrams	647A 46 647A 46	648A 46 648A 46	649A 50 649A 50	650A 48 650A 48	651A 46 651A 46	652A 54	653A 52	
. 4 .5d	Photometric Ca II Faculae (San Fernando)				ec 96 in 631E		0024 04	0004 02	
6c	Stanford Solar Mag Field Synoptic Maps	647A 40	648A 40	649A 44	650A 42	651A 40	652A 42	653A 46	
.6d	Kitt Peak Solar Mag Field Synoptic Maps	647A 45	648A 45	649A 49	650A 47	651A 45	652A 52	653A 51	
6f	Active Prominences and Filaments	651B 46	652B 32	653B 32					
6g	Sac Peak Coronal Line Synoptic Maps	647A 42	648A 42	649A 46	650A 44	651A 42	652A 46	653A 48	
6ĥ	Photometric White Light (San Fernando)	Aug 95-Jur	1 96 in 624B 3	24; Jul-Dec 9	6 630B 32				
7h	Coronal Line Emission (Sac Peak)	647A 46	648A 46	649A 50	650A 48	651A 46	652A 54	653A 52	
.7j	Coronal Hole Daily Maps (NSO/KP)	647A 83	648A 81	649A 87	650A 85	651A 81	652A 91	653A102	
.7k	Coronal Index (Slovak Academy)		in 644B 28	0./0.1. 00		0504 05	0544.05	0504.04	
.8aa	2800 MHz- Solar Flux (Penticton)	646A 25	647A 25	648A 26	649A 26	650A 25	651A 25	652A 24	653A 27
.8ac	2800 MHz- Adj. Solar Flux (Penticton) Adjusted Daily Solar Fluxes (Learmonth)	646A 25 646A 25	647A 25 647A 25	648A 26 648A 26	649A 26 649A 26	650A 25 650A 25	651A 25 651A 25	652A 24 652A 24	653A 27 653A 27
.8g .10g	Nancay Radioheliograph - 164&327 MHz	646A 25 647A142	648A134	649A142	650A153	651A146	652A133	653A141	033A 21
10g 10h	Nobeyama Radioheliograph Maps - 17 GHz	647A 77	648A 76	649A 81	650A 79	651A 76	652A 85	653A 97	
.11g	Solar X-ray GOES (graphs/event table)	651B 37	652B 24	653B 23	0007 79	0017.10	0027 00	0007.01	
.11k	Solar UV NOAA-9		c 88 in 566B						
111	Solar UV NIMBUS7	•	84 in 542B 8						
11m	Solar UV SOLSTICE (UARS)		94 in 607B						
11n	Solar YOHKOH Soft X-ray Images	647A 88	648A 86	649A 91	650A 89	651A 86	652A 96	653A 82	
110	Solar UV SUSIM (UARS)	Oct 91-Jan	97 in 629B 3	30					
.12g	Solar Particles (GOES-7)	646A 4	647A 4	648A 4	649A 4	650A 4	651A 4	652A 4	653A 4
12h	Interplanetary Particles (SAMPEX)			2; Jan-Dec 9	7 in 647B 33				
.13e	Solar Plasma (IMP-8)	651B 48	652B 34	653B 33					
.16c	ERBS, NOAA-9 & -10 Solar Irradiance				ct 97 in 639B	58			
.16d	UARS Solar Irradiance		97 in 642B		- 04 - 044 4	40			
.17c .17	Inferred Interplanetary Mag Field	1964-1988 651B 49	652B 35	653B 34	n 94 in 611A [.]	110			
/	IMP-8 Interplanetary Mag Field SOLAR FLARE-ASSOCIATED EVENTS	0310 49	0320 33	0000 04					
.1a	H-alpha Flares	646A 28	647A 28	648A 29	649A 29	650A 28	651A 28	652A 27	653A 30
1ba	H-alpha Flare Groups	651B 4	652B 4	653B 4	010/(20	0001120	0011120		000/100
.1d	Flare Patrol Obsevations	651B 16	652B 12	653B 12					
.1h	H-alpha Flare Index (ImpxDur)		96 in 635B 2		c 85 in 639B	26			
.3	Radio Bursts Fixed Frequency	651B 18	652B 14	653B 14					
.3	Radio Bursts Fixed Frequency Selected	646A 36	647A 34	648A 34	649A 37	650A 35	651A 34	652A 36	653A 40
.4	Radio Bursts Spectral	647A118	648A118	649A130	650A133	651A124	652A123	653A124	
.6	Sudden Ionospheric Disturbances	647A114	648A116	649A128	650A130	651A122	652A121	653A121	
•.	GEOMAGNETIC EVENTS								
.1a	Geomagnetic Indices	647A152	648A144	649A149	650A163	651A156	652A143	653A151	
.1ba	27-day Chart of Kp Indices	647A154	648A146	649A151	650A165	651A158	652A145	653A153	
.1cb	Monthly Mean aa Indices	647A155	648A147	649A152	650A166	651A159	652A146	653A154	
.1d 1f	Principal Magnetic Storms	647A159	648A151	649A156 649A157	650A170	651A163 651A164	652A150 652A151	653A158 653A159	
.1f 1a	Sudden Commencements/Flare Effects Equatorial Indices Dst	647A160 647A157	648A152 648A149	649A157 649A154	650A171 650A168	651A164	652A151	653A159	
.1g .1i	Polar Cap (PC) Index	647A158	648A150	649A155	650A169	651A162	652A149	653A157	
	COSMIC RAYS		5 10,1100		000,1100	JUTITE	3021110	500, (107	
1b	Cosmic Ray Neutron Cts (Climax)		648A136	649A144	650A155	651A148	652A135	653A143	***************************************
1h	Cosmic Ray Neutron Cts (Thule)								
1i	Cosmic Ray Neutron Cts (Kiel)	647A144	648A136	649A144	650A155	651A148	652A135	653A143	
in	Cosmic Ray Neutron Cts (Beijing)	647A144	648A136	649A144	650A155	651A148	652A135	653A143	
1m	Cosmic Ray Neutron Cts (Haleakala)	647A144	648A136	649A144	650A155	651A148	652A135	653A143	
10	Cosmic Ray Neutron Cts (Moscow)	647A144	648A136	649A144	650A155	651A148	652A135	653A143	
1p	Cosmic Ray Neutron Cts (Calgary)	647A144	648A136	649A144	650A155	651A148	652A135	653A143	
1r	Cosmic Ray Neutron Cts (Goose Bay)	647A144	648A136	649A144	650A155	651A148	652A135	653A143	\$20000500000000000000000000000000000000
•	MISCELLANEOUS								
.60	ISES Alert Periods	646A 20	647A 19	648A 20	649A 20	650A 19	651A 20	652A 19	653A 20

he entry "647A 46" under May 98, for example, means that the sunspot drawings for May 98 appear in <u>SOLAR-GEOPHYSICAL DATA</u> No. 647, Part I, and at they begin on page 46. "A" denotes Part I and "B", Part II. Blanks indicate data not yet received and dashes mark unavailable data.

CONTENTS

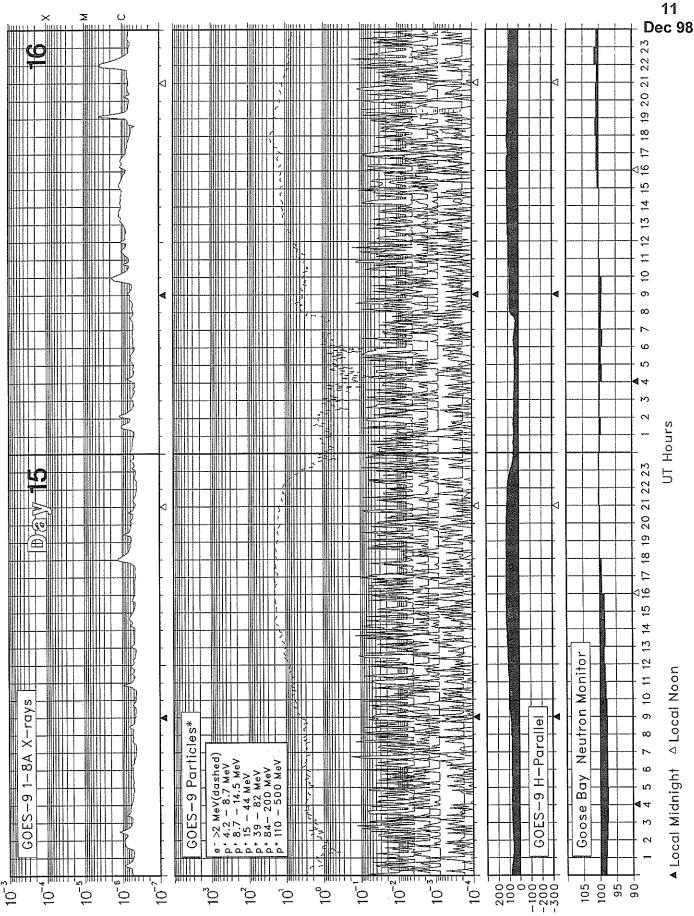
Prompt Reports	Jumber 653	Part I
DATA FOR DECEMBER 1998		
		Page
SOLAR-TERRESTRIAL ENVIRONMENT Plots of GOES satellite X-rays, Particles and Magnetometer data with ground-based Goose Bay Neutron Monitor		4-19
ISES ALERT PERIODS (Advance and Worldwide)		20-24
SOLAR ACTIVITY INDICES Daily Sunspot Numbers (12 Months) Daily 2800 MHz Solar Flux (12 Months) Daily Solar Indices (Sunspot Numbers and Solar Flux) Smoothed Observed and Predicted Sunspot Numbers Graph and Table of Monthly Mean Sunspot Numbers 1950-present SOLAR FLARES H-alpha Solar Flares		25 26 27 28 29 30-39
Intervals of No Flare Patrol (See 6-month late chart in Comprehensive Repor	ts.)	
SOLAR RADIO EMISSION Selected Fixed Frequency Events Selected Bursts (None reported.)		40
STANFORD MEAN SOLAR MAGNETIC FIELD Table		41 42
GOES-8 Daily Electron Fluence		43

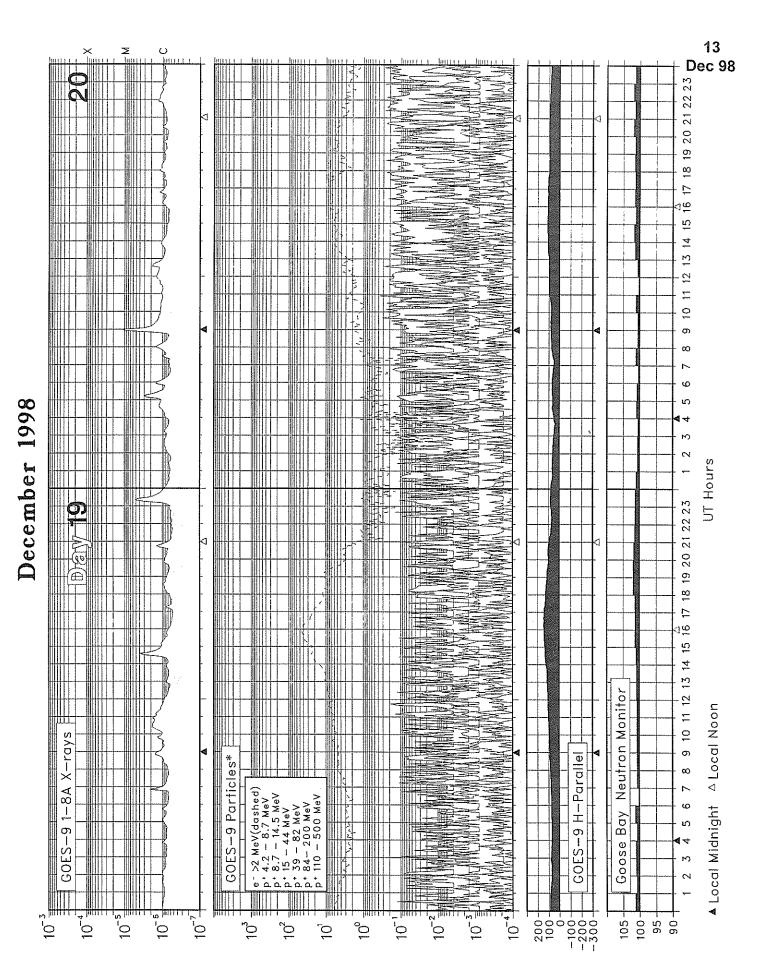

RIAL ENVIRONMENT ber 1998	* Electron flux is divided by 10. * Electron units are Counts/cm ² sec st. Protons are corrected for contamination.	Image: Control of the second state of the second
SOLAR-T	romania and a set of the set of t	·····································

.

▲ Local Midnight △ Local Noon

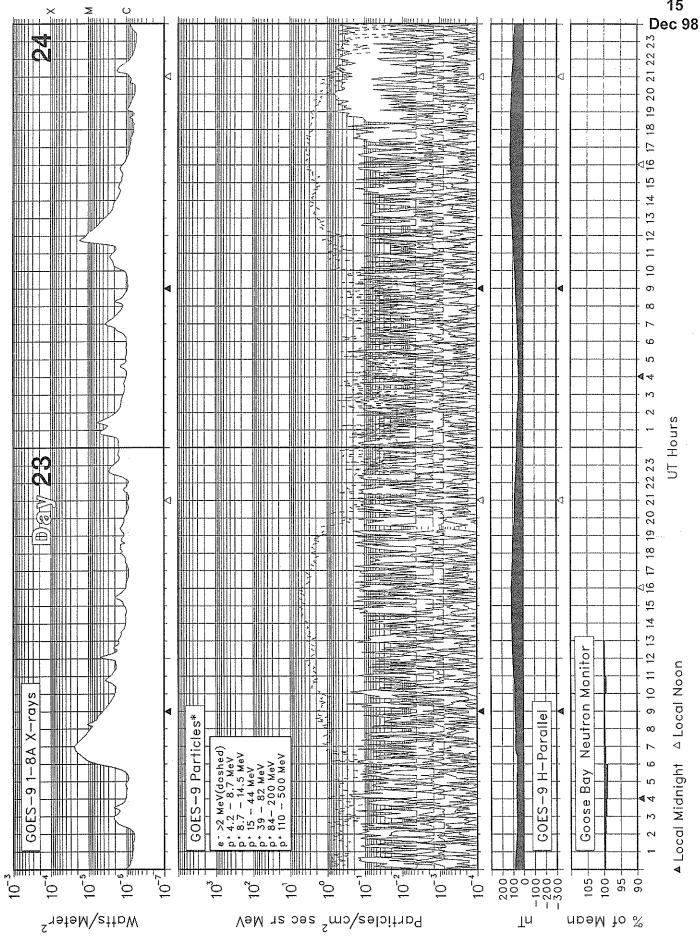
	× Σ υ	<u>– Marres Marres Marres Marres Marres Marres Marres a</u>	5
			— Dec 98
			22.22
			0 21
			19 2(
			16 17
4			
4			-+ £
4			12
4			
)			
1			
; 00			2 0
1998			44
)er			
			UT Hours
Decembe			1 23
0 G			
			8 19
			+ 6
			15 16
			- 7
			12 12 13
			1 1 00
	s April 1		7 8 9 10 11 1 ∆ Local Noon
	\times		Loc
	-9 1-8A	V Neutr	
	စ္		- 5 nigh
-	OES-		Local Midnight
	ы Шалана Паралана С		2 2 Scal
۲۹ ا			
	10 ⁻¹⁰ -10 ⁻¹⁰ -10 ⁻¹⁰		06
	WDIIS/ METER		


6	× ≍ ∪ haari harri harri harri j	
lec 98		
SULAK-TEKKESTKIAL EN VIKUNMENT December 1998		The function of the second sec
	WGIISYMBIEL	Vew 12 222 moved of the moved o

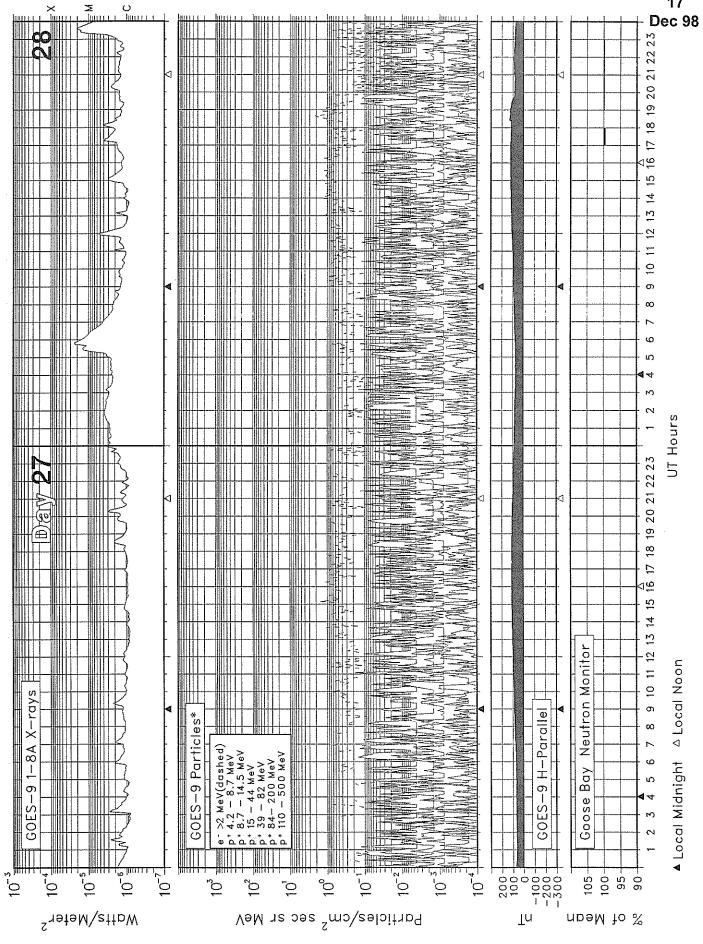

	8	× ≆ u		
PULART LEKKES I KIAL EN VIKUNMEN I Becember 1998	lec 98		┹┵╼╉╴ <mark>╫╫╽╎┼╴╢╽╽╎┼╶╢╽╽┼┼╴╢╢╽┼┼╴╣╢╽┼╧╴╢╢╽┼╧╴╢╢╷┼╧╶╝╝╵╧╤╧</mark> ╴┍╋┽┼ ╼╁╴ ╵	
PULAT-IEAKESIKIAL ENVIKUNMENI December 1998				
December 1998 Provide The December 1998 Provid				~
SULAR-IERKESIKIAL EINVIKUNMENI Becember 1998				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
SULAR-IERKESIKIAL EINVIKUNMENI Becember 1998				5
SULAR-I LINKLES I KIAL LINVIKUNMENI December 1998				
SULART LENKICSI KIAL ENVIKUNMENT December 1998				<u> </u>
SULAR TERRESTRIAL ENVIRONMENT December 1998				₽
SULAR-I EKKESI KIAL EINVIKUNMEN December 1998 X-ovs A-o				<u>9</u>
SULAR-I EKKESI KIAL EINVIKUNMEN December 1998 X-ovs A-o				
SULART I EKKED I KIAL EN VIKUNMEL December 1998 X-rays X-rays X-rays Y-rays	=			
SULLAN- LENKLES I KIAL EIN VI Becember 1998	Ę			· · · · ·
SULLAN- LENKLES I KIAL EIN VI Becember 1998	L			
December 1998	IVI			
SULLAN- LENKLES I KIAL EIN VI Becember 1998	2			2
December 1998	5			
December 1998	Ľ			∞ ∞
SULAR-I LINICOLINAL LIN Becember 1998				
December 195 December 195 Decem				
SULAR-I LINKLS I KIAL	म २			
SULAN- I LINKLS I K Becemb A-rays A-rays A-rays A-rays Becemb B	ງ ີ			
SULAR LERKES IN Decemb Decem				s s
SULAN- I LINLS V-rdys Pece les*				no
SULAN- I LINLS V-rdys Pece les*				2 2 3 1 UT Hours
SULAR- LENK V-rays D D D D D D D D D D D D D				
SULAR- LENK V-rays D D D D D D D D D D D D D	ก บ			
SOLAN-Lays 	L O			S
SOLAN-Lays 	r d			
SULAN-L X-rdys X-rdys A A A A A A A A A A A A A	ų.			<u> </u>
	Ц			
	201100			<u><u> </u></u>
	q			<u>∽</u> <u>∼</u> <u>∼</u>
	้			leutron Monit 7 8 9 10 11 1 △ Local Noon
	1]			
		Ĩ Ĩ		
		\times		
				Z
9		<u> </u>		
SSe Bay Nei SSE Ba				
				Mic a
				Goose Bay
		10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105 100 95 90

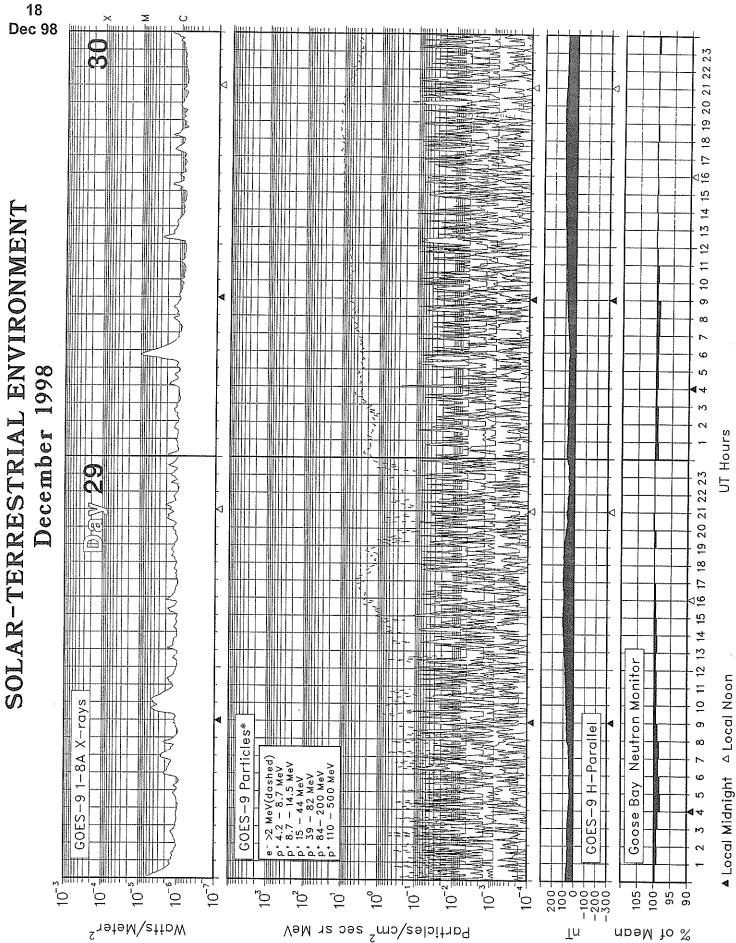
	× Σ O		9
			53
			1 22
			0 21
			6
			[₽]
			16 −
			<u>–</u> 5
			1
T			
			o
00			v
1998			
13			m
5			Ls 2
e			Hours
Decemb			2 2 3 UT F
9 2 2			5
ల్ల			
Ő			50
			8
			0
			7
1	ly s	n Monitor	N 00
!	skou -		
		Particles*	7 8 9 10 11 1 ∆ Local Noon
	8A X-		
			-+ ° +-
			nig
		DES-9 Particles*	lidr 4 ▶
	U U U U U U U U U U U U U U U U U U U	COES-9 Partic >20ES-9 Partic 8.7 - 14.5 wev 15.7 - 14.5 wev 15.7 - 14.5 wev 10 500 wev 110 - 500 wev 110 - 500 wev 110 - 500 wev 110 - 500 wev	
	Ū		▶
			4
		$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	06

December 1998

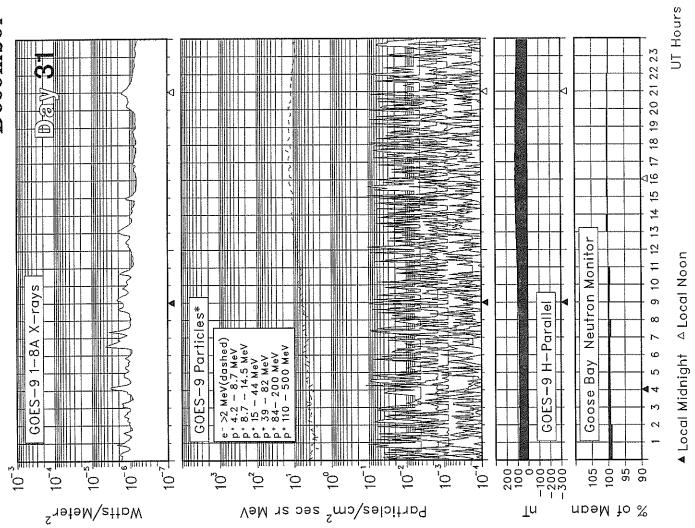


Picember 198 December 198 De
December 198


14	× ∑ u		
e 98∶		┽╵┝╫╫┼┼┶╫╢╎╎╴╫╢╎╎╴╢╢╎╎╴╢╢╎╎╴╢╢┼┼	
		COES-9 Particles*	ht △Local Noon UT Hours


SOLAR-TERRESTRIAL ENVIRONMENT December 1998

SOLAR-TERRESTRIAL ENVIRONMENT December 1998	CoEs-91-8A X-rays	0015-5 Particles* 0015-5 Particles* 0015-10.0000 0010-1000 0015-10.0000 0010-1000 0015-10.0000 0010-1000 0015-10.0000 001000 0015-10.0000 001000 0015-10.0000 001000 0015-10.0000 001000 0015-10.0000 001000 0015-10.0000 001000 0015-10.0000 001000 0015-10.0000 001000 0010000 001000 0010000 001000 0010000 001000 0010000 001000
01 	Watts/Meter ²	► Loca 2 2 2000 0 10 10 10 10 10 10 10 10 10 10 10 1
	ζ ι η η η ττη η η	% of Mean ut barticles/cm ² sec sr MeV



△ Local Noon

SOLAR-TERRESTRIAL ENVIRONMENT December 1998

* Electron flux is divided by 10. Electron units are Counts/cm² sec sr. Protons are corrected for contamination. 20 Dec 98

A L E R T P E R I O D S The International Space Environment Service

	Date	Date		10-cm		Location		F	lares		Date		
Julian Day	of Issue	of Obs	Wolf No.	Solar Flux	A- index	Lat	Long	Optical	M	<u> </u>	of Forecast	Region Forecast(1)	Geoadvice(1)
335	01	30	186	163	12	S18 N22 N28 N15 N18 N30 S18 N12	W16 E11 W95 E64 W05 E23 E08 E27	0 4 2 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	01 01 01 01 01 01 01 01	Q E Q Q Q Q Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
336	02	01	153	163	8	S17 N20 N14 N18 N24 S18 N12 N17	W31 W01 E46 W15 E09 W07 E16 E64	0 4 0 0 0 2	0 0 0 0 0 0 0	0 0 0 0 0 0	02 02 02 02 02 02 02 02 02	Q E Q Q Q Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
337	03	02	144	152	4	S16 N20 N15 N18 N26 S18 N12 N18	W45 W17 E32 W28 W04 W21 E01 E53	0 5 0 0 0 0 2	0 0 0 0 0 0	0 0 0 0 0 0	03 03 03 03 03 03 03 03 03 03	Q E E Q Q Q Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
338	04	03	136	153	7	S15 N18 N14 N18 N29 N12 N18 N20	W64 W27 E19 W40 W22 W13 E39 E50	0 1 0 0 1 2 0	0 0 0 0 0 0	0 0 0 0 0 0	04 04 04 04 04 04 04 04	Q E E Q Q Q E Q	SOL: Eruptive MAG: Quiet PRO: Quiet
339	05	04	109	148	9	S15 N20 N14 N18 N10 N16 N19	W78 W40 E06 W52 W26 E26 E38	0 0 0 0 1 0	0 0 0 0 0 0	0 0 0 0 0 0	05 05 05 05 05 05 05	Q E Q Q E Q	SOL: Eruptive MAG: Active PRO: Quiet
340	06	05	91	142	13	S16 N19 N15 N17 N17 N16 N19	W97 W49 W08 W60 W40 E10 E26	1 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	06 06 06 06 06 06 06	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
341	07	06	106	142	8	N20 N16 N18 N16 N19 S22 S16	W59 W24 W72 W02 E15 E02 E64	0 1 2 0 0 0	0 0 0 0 0 0	0 0 0 0 0	07 07 07 07 07 07 07	Q Q Q Q E Q E Q	SOL: Eruptive MAG: Quiet PRO: Quiet
342	08	07	143	153	6	N19 N16 N20 N29 N17 N20 S23	W78 W36 W86 W66 W17 W02 W12	0 0 0 4 0 1	0 0 0 0 0 0	0 0 0 0 0	08 08 08 08 08 08 08 08		SOL: Eruptive MAG: Quiet PRO: Quiet

DECEMBER 1998

A L E R T P E R I O D S The International Space Environment Service

Julian	Date of	Date of	Wolf	10-cm Solar	A-	Loca	ation	F	ares		Date of	Region	
Day	Issue	0bs	No.	Flux	index	Lat	Long	Optical	М	X	Forecast		Geoadvice(1)
						\$16 \$27	E49 E71	4 0	0 0	0 0	08 08	Q Q	
343	09	08	158	162	3	N20 N16 N29 N17 N20 S24 S15 S27 S17	W79 W50 W80 W31 W15 W25 E35 E62 E07	1 0 1 0 5 4 0 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	09 09 09 09 09 09 09 09 09	G G G G G E E G G	SOL: Eruptive MAG: Quiet PRO: Quiet
344	10	09	132	154	3	N16 N29 N16 S23 S15 S28 S17	W63 W92 W28 W38 E21 E48 W07	0 2 0 4 1 0	0 0 0 0 0 0 0	0 0 0 0 0 0	10 10 10 10 10 10 10	Q Q E Q E Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
345	11	10	145	134	5	N16 N17 S22 S15 S27 S17 S18 S29	W76 W56 W41 E06 E28 W20 E27 E43	0 0 3 2 0 0 2 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	11 11 11 11 11 11 11 11	с Е с Е Е С С С	SOL: Eruptive MAG: Quiet PRO: Quiet
346	12	11	166	143	22	N16 N20 S22 S14 S28 S16 S18 S29 N23 S28	W89 W71 W54 W08 E16 W33 E15 E27 E77 E64	0 0 3 3 0 5 2 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	12 12 12 12 12 12 12 12 12 12 12	G G G E E G G E G G G	SOL: Eruptive MAG: Quiet PRO: Quiet
347	13	12	142	147	6	N17 N20 S22 S28 S18 S29 N23 S29	W81 W66 W77 E02 E01 E13 E61 E52	0 0 3 0 6 6 0 1	0 0 0 0 0 0	0 0 0 0 0 0	13 13 13 13 13 13 13 13	0 0 0 0 E E O O	SOL: Eruptive MAG: Quiet PRO: Quiet
348	14	13	152	144	1	N17 N20 S24 S26 S18 S28 N24 S28 S15	W93 W80 W86 W09 W13 E01 E48 E39 W26	0 0 1 0 8 1 0 1 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	14 14 14 14 14 14 14 14	Q Q Q E E Q Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
349	15	14	113	144	5	S28 S19 S29 N26	W22 W28 W10 E37	0 9 0 0	0 0 0 0	0 0 0 0	15 15 15 15	Q E Q	SOL: Eruptive MAG: Quiet PRO: Quiet

DECEMBER 1998

A L E R T P E R I O D S The International Space Environment Service

Julian	Date of	Date of	Wolf	10-cm Solar		Loc	ation	F	lares		Date		
Day	Issue	Obs	No.	Flux	A- index	Lat	Long	Optical	М	x	of Forecast	Region Forecast(1)	Geoadvice(1)
						\$30 \$17	E28 W36	0 0	0 0	0 0	15 15	Q	
350	16	15	108	142	5	S27 S18 S28 N25 S29 S15 N18	W35 W40 W25 E22 E14 W53 E13	0 4 1 0 0 0	0 0 0 0 0	0 0 0 0 0 0	16 16 16 16 16 16	Q E E Q Q Q Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
351	17	16	118	141	9	S27 S17 S27 N23 S28 S15 N21	W48 W53 W38 E09 E00 W67 E49	0 3 1 0 0	0 0 0 0 0 0	0 0 0 0 0 0	17 17 17 17 17 17 17	Q E Q Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
352	18	17	93	146	0	S26 S17 S28 N24 N25 N19	W59 W65 W50 W04 E34 E72	0 3 8 0 0 8	0 0 1 0 0	0 0 0 0 0	18 18 18 18 18 18	Q E Q Q E	SOL: Eruptive MAG: Quiet PRO: Quiet
353	19	18	76	155	2	S17 S26 N24 N19	W79 W63 W17 E61	0 3 0 15	0 0 0 1	0 0 0 0	19 19 19 19	E E Q E	SOL: Active MAG: Quiet PRO: Quiet
354	20	19	88	138	3	S18 S28 N24 N27 N20	W91 W75 W29 E13 E49	0 1 0 3	0 0 0 0	0 0 0 0	20 20 20 20 20 20	Q E Q Q E	SOL: Active MAG: Quiet PRO: Quiet
355	21	20	98	135	11	S28 N24 N26 N20 N19 N22 S23	W87 W42 E02 E36 E68 W64 E43	0 2 3 3 0 0	0 0 1 0 0 0	0 0 0 0 0	21 21 21 21 21 21 21 21	E Q Q E Q Q Q	SOL: Active MAG: Active PRO: Quiet
356	22	21	72	135	2	N24 N20 N18 N23	W55 E23 E58 W75	0 2 4 0	0 0 0 0	0 0 0 0	22 22 22 22 22	Q E Q	SOL: Eruptive MAG: Active PRO: Quiet
357	23	22	56	129	3	N20 N19 N23	E11 E45 W86	2 2 0	0 0 0	0 0 0	23 23 23	E Q Q	SOL: Eruptive MAG: Quiet PRO: Quiet
358	24	23	78	140	5	N22 N20 N28 N18 N29	W02 E31 E25 E64 E80	0 0 1 0 1	0 0 0 0	0 0 0 0	24 24 24 24 24 24	E Q Q Q E	SOL: Eruptive MAG: Quiet PRO: Quiet
359	25	24	93	139	4	N23 N20 N28 N18 N27 S23	W12 E20 E14 E52 E64 E75	0 4 0 4 0	0 0 0 1 0	0 0 0 0 0	25 25 25 25 25 25		SOL: Active MAG: Quiet PRO: Quiet

DECEMBER 1998

ALERT PERIODS The International Space Environment Service

Julian	Date	Date	Wolf	10-cm Solar	۸_	Loc	ation	F	ares		Date of	Doctor		
Day	of Issue	of Obs	No.	Flux	A- index	Lat	Long	Optical	M	Х	Forecast	Region Forecast(1)	Geoa	dvice(1)
360	26	25	84	144	9	N19	E05	0	0	0	26	Q		Eruptive
						N27	E00	1 0	0 0	0 0	26 26	Q		Quiet
						N17 N27	E40 E52	5	1	Ö	26	Q	PRU:	Quiet
						\$26	E68	õ	O	ŏ	26	E		
361	27	26	100	145	16	N20	₩40	1	0	0	27	Q		Active
						N21 N27	₩10 ₩14	1 4	0 0	0	27 27	Q		Quiet Quiet
						N20	E24	ů.	ŏ	ŏ	27	Q	FRO.	WUICL
						N26 S23	E40 E51	10 1	0 0	0	27 27	E		
747	20	27	154	1/7	4				-	_			001 -	
362	28	27	156	167	1	N16 N19	₩49 ₩22	0 * 1	0 0	0	28 28	Q		Active Quiet
						N27	W27	3	ŏ	ŏ	28	Ē		Quiet
						N20	E12	0	0	0	28	Q		
						N27	E26	7	0	0	28	E		
						S23 N23	E38 W28	2 1	0 0	0 0	28 28	Q Q		
363	29	28	177	184	3	N19	W33	1	1	0	29	Q	SOL:	Active
						N26	W40	14	3	0	29	Е		Quiet
						N18 N26	W01 E13	0 7	0 1	0	29 29	Q E	PRO:	Quiet
						N20 S23	E15 E26	3	0	0	29	E Q		
						N22	₩44	ō	õ	Õ	29	<u>a</u>		
						s21	E10	0	0	0	29	Q		
364	30	29	136	183	11	N18 N26	₩47 ₩52	0 5	0 0	0 0	30 30	Q E		Active Quiet
						N26	E00	20	ŏ	ŏ	30	E		Quiet
						S23 N22	E13 ₩57	1 0	0 0	0 0	30 30	Q Q		
365	31	30	186	179	3	N18	W60	0	0	0	31	Q	501 -	Active
505		50	100		5	N26	W65	õ	ŏ	ŏ	31	E		Quiet
						N19	W17	0	0	0	31	Q		Quiet
						N26	W14	14	1	0	31	E		
						S23 N21	W01 W72	0	0 0	0 0	31 31	Q		
						s26	E51	Ö	Ö	Ő	31	Q		
1) Reg	E = A = M = V =	Quiet Erupti Active Major Proton Warnin	(<50 ve (C-c (M-c (X-c g (act	0% proba class fl class fl class fl class fl	bility o ares exp ares exp ares exp res exp evels an	ected, ected, ected, ected,	probabi probabi probabi probabi	ility >=50 ility >=50 ility >=50 ility >=50)%))%))%)	no n	umerîcal f	orecast giver	1)	
Mag	netic (M		oadvice	2										
	'Qui e			onc		(A P.	0 *	-4.5						
	'Act 'Mind			ons exp expected	ected		Uork: Oork:							
	'Majo	or i	storm e	expected		(A>= 5	0 or K>:	=6)						
	Sev			expected		-	0 or K>=	•						
		ning"	(activi	ty leve					ut no	nume	rical fore	cast given)		
-	1/1			cast av	ailable									
Pro	oton (PR) 'Qui	et'												
	Pro INci			expected	 xpected			t > 10 Me\ t >100 Me\						

DECEMBER 1998

A L E R T P E R I O D S The International Space Environment Service

DECEMBER 1998

'Warning' (activity levels are expected to increase, but no numerical forecast given)
'/' no forecast available

STRATWARM ALERTS

12/07/98 03:30:00 GEOALERT WWA341 STRATWARM ALERT/SUNDAY/STRATWARM EXISTS. AN INTENSE WARMING EXISTS OVER EAST ASIA, LEADING TO A TEMPERATURE INCREASE OF MORE THAN 35 DEGREES CELSIUS DURING A WEEK NORTH OF THE SEA OF OKHOTSK AT 10HPA. WARM AIR SPREADING NORTHEASTWARD. AT THE SAME TIME THERE IS A STRONG AND COLD VORTEX OVER THE EUROPEAN/WESTSIBERIAN ARCTIC.

12/08/98 03:30:00 GEOALERT WWA342 STRATWARM ALERT/MONDAY/STRATWARM EXISTS. THE INTENSE WARMING, CENTERED OVER NORTHEAST SIBERIA TODAY, CONTINUES WITH WARM AIR SPREADING NORTHEASTWARDS. THE SECOND WARM REGION OVER MONGOLIA EXTENDS NORTHWEST AND WESTWARDS.

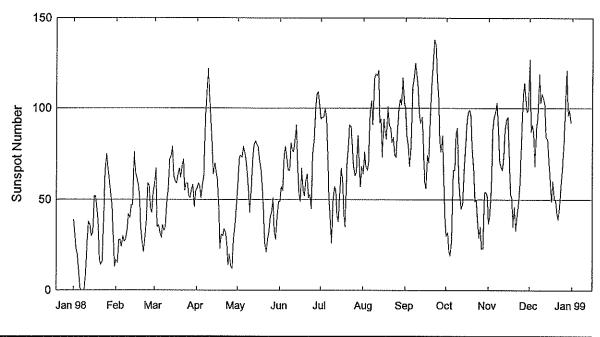
12/09/98 03:30:00 GEOALERT WWA343 STRATWARM ALERT/TUESDAY/STRATWARM EXISTS. THE WARMING OVER NORTHEAST SIBERIA CONTINUES AND THE SECOND WARMING OVER MONGOLIA INTENSIFIES.

12/10/98 03:30:00 GEOALERT WWA344 STRATWARM ALERT/WEDNESDAY/STRATWARM EXISTS. THE WARMING OVER NORTHEAST SIBERIA IS WEAKENING BUT THE WARMING OVER MONGOLIA, SOUTH AND SOUTHEAST OF SIBERIA, IS INTENSIFYING. WARM AIR IS SPREADING NORTHEASTWARDS.

12/11/98 03:30:00 GEOALERT WWA345 STRATWARM ALERT/THURSDAY/STRATWARM EXISTS. AN INTENSE WARMING CONTINUES OVER EAST SIBERIA AND MONGOLIA.

12/15/98 03:30:00 GEOALERT WWA349 STRATWARM ALERT/MONDAY/STRATWARM EXISTS. A STRONG WARMING CONTINUES OVER SIBERIA IN THE UPPER AND MIDDLE STRATOSPHERE,AND A CANADIAN WARMING PERSISTS IN THE LOWER STRATOSPHERE.

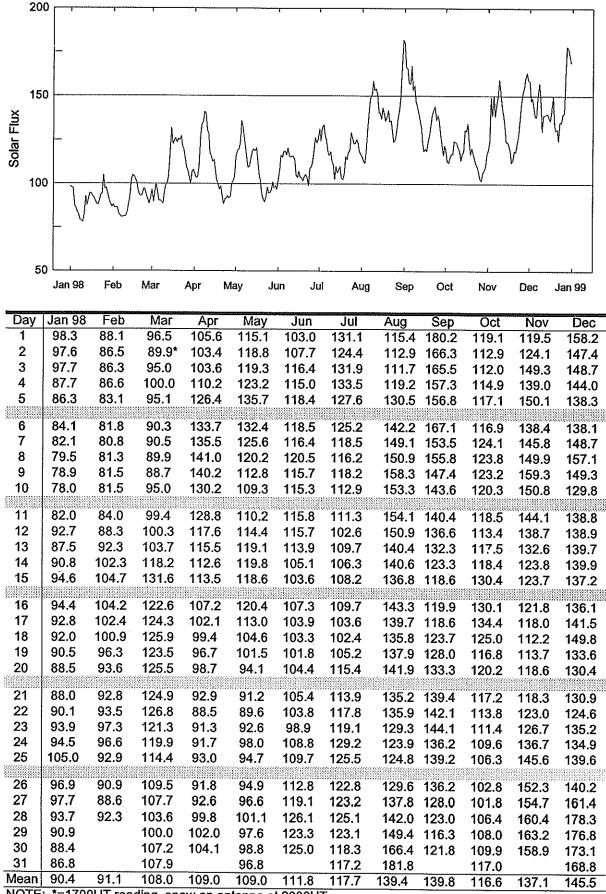
12/16/98 03:30:00 GEOALERT WWA350 STRATWARM ALERT/TUESDAY/STRATWARM EXISTS. THE STRONG WARMING CONTINUES OVER SIBERIA AND EXPANDS OVER POLAR REGION AND CANADIAN ARCTIC IN THE UPPER AND MIDDLE STRATOSPHERE. THE CANADIAN WARMING PERSISTS IN THE LOWER STRATOSPHERE.


12/17/98 03:30:00 GEOALERT WWA351 STRATWARM ALERT EXISTS STRATWARM WEDNESDAY A VERY STRONG WARMING CONTINUES OVER SIBERIA, ALASKA AND THE SIBERIAN/CANADIAN ARCTIC. TEMPERATURE GRADIENT REVERSED BETWEEN 60N AND THE POLE AT 50HPA AND ABOVE UNTIL THE UPPER MOST STRATOSPHERIC LEVELS. MEAN ZONAL WIND AT 60N DECREASING.

12/18/98 03:30:00 GEOALERT WWA352 STRATWARM ALERT/THURSDAY/STRATWARM EXISTS. MAJOR WARMING EXISTS. A STRONG ANTICYCLONE AND A VERY INTENSE WARMING OVER THE SIBERIAN/CANADIAN ARCTIC DOMINATE THE POLAR REGION AND DISPLACE THE VORTEX CENTRE TO THE CENTRAL URAL AREA. MEAN ZONAL WIND AT 60N IS FROM EAST AT 10HPA AND ABOVE IN THE UPPER STRATOSPHERE AND THE TEMPERATURE GRADIENT REVERSED BETWEEN 60N AND THE POLE IN THE WHOLE STRATOSPHERE.

12/22/98 03:30:00 GEOALERT WWA356 STRATWARM ALERT/MONDAY/STRATWARM EXISTS. MAJOR WARMING EXISTS. THE MAIN ANTICYCLONE IS LOCATED OVER NORWEGIAN SEA AND THE SECOND OVER BERING SEA. THE WARM AIR MOVES SOUTHWARDS TO BARENTS SEA AND CENTRAL SIBERIAN PLATEAU, FURTHER SLIGHTLY WEAKENING. THE TWO CENTRES OF THE VORTEX EXIST OVER SIBERIA AND HUDSON BAY, TODAY. MEAN ZONAL WIND AT 60 N IS FURTHER FROM EAST AT 10 HPA. TEMPERATURE GRADIENT REVERSED BETWEEN 60 N AND THE POLE IN THE LOWER AND MIDDLE STRATOSPHERE.

12/23/98 03:30:00 GEOALERT WWA357 STRATWARM ALERT/TUESDAY/STRATWARM EXISTS.

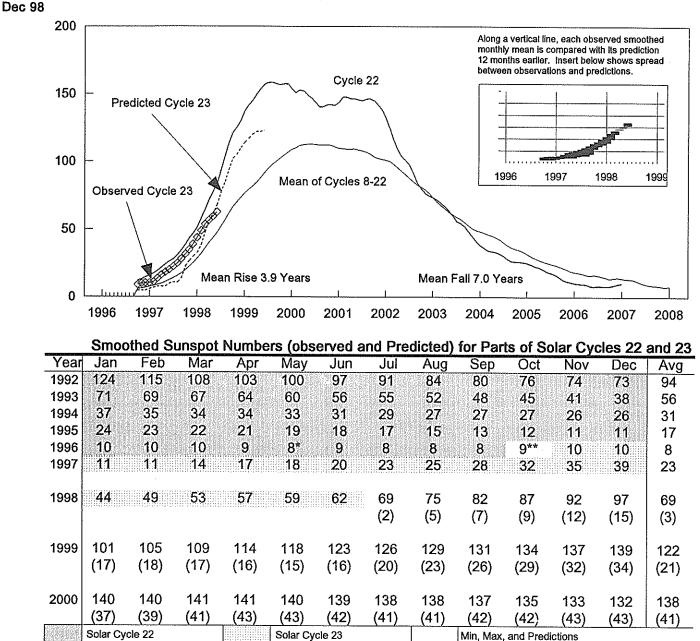

THE INTENSE WARMING, CENTRED OVER NORTH SIBERIA AND THE ADJACENT ARCTIC CONTINUOUSLY WEAKENING. THE ANTICYCLONE BETWEEN GREENLAND AND NORWAY WEAKENING TOO. MEAN ZONAL WIND AT 60N IS NO LONGER FROM EAST AND THE TEMPERATURE GRADIENT REVERSED BETWEEN 60N AND THE POLE ONLY STILL IN THE MIDDLE STRATOSPHERE. END OF THIS GEOALERT.

Day	Jan 98	Feb	Mar	Apr	May	Jun	Jul*	Aug*	Sep*	Oct*	Nov*	Dec*
1	39	17	59	56	57	49	94	64	100	30	37	127
2	31	15	67	59	73	57	95	76	85	32	41	87
3	23	28	35	57	74	55	95	68	79	22	56	91
4	20	28	36	51	73	74	100	66	68	19	88	86
5	10	22	32	59	79	79	94	70	80	28	95	68
6	1	30	29	63	76	72	74	98	112	66	98	89
7	0	27	36	93	71	66	51	104	116	66	103	95
8	0	28	33	106	63	66	38	91	125	86	92	119
9	0	33	35	122	54	81	26	117	119	89	71	103
10	10	42	50	108	43	77	49	119	112	60	68	108
	27	40	EC.	06	FO	76						
11 12	38	40 47	56 72	96 80	58 73	76 83	57 55	118 121	96 92	51	66 70	105
12	36	47	72 74	64	80	oo 91	55 41	92	92 95	45 48	73 88	102 84
13	30	76	74 79	70	82	91 69	38	92 94	95 78	48 66	88 94	
14	32	65	63	65	80	53	55	94 73	60	77	94 95	83 72
	J L				00	JJ			ΟU		90	1 2
16	52	62	60	61	79	49	67	94	56	93	76	60
17	52	58	59	46	71	67	59	87	74	98	53	49
18	46	52	64	23	67	55	42	83	70	99	51	60
19	39	35	67	31	56	52	35	101	93	96	35	50
20	17	28	62	30	43	60	69	91	114	76	46	50
21	14	21	69	34	26	64	78	89	125	68	33	43
22	16	28	72	32	21	51	91	81	138	49	41	39
23	40	39	55	26	28	53	90 70	84	135	50	47	47
24	66 75	59 58	59 59	14	32	45	79	74	117	39	59	58
25	/ 0	0C	59 59	20	41	75	68	73	105	29	80	66
26	67	45	52	13	43	83	63	87	82	35	106	81
27	61	43	51	12	51	100	65	100	76	23	114	100
28	53	54	56	28	33	108	85	105	85	23	106	121
29	47		58	36	28	109	74	102	60	54	98	96
30	28		46	46	40	101	57	117	41	54	99	99
31	13		55	-	49		68	103		52	~ ~	92
Mean	31.9	40.3	54.8	53.4	56.3	70.7	66.2	91.7	92.9	55.6	73.6	81.6
* = Pro	ovisional.											

Penticton 2800 MHz (10.7cm) Solar Flux Jan 98 - Dec 98

Adjusted to 1 AU

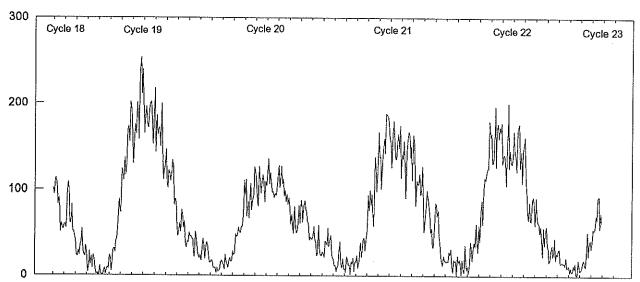
NOTE: *=1700UT reading, snow on antenna at 2000UT.


D	A	I	L	Y	S	0	L	A	R		I	N	D	I	С	Ε	S
						De	cer	nbe	er	1	99	98					

Day	Day of Year	Bartels Cycle Day	Suns Numb Int	ers	Obs Flux Penticton (2800)	LEAR (15400)	LEAR	LEAR		LEAR	LEAR	LEAR	LEAR	
1	335	16	127	100	162.7	542	265	185	158.2	158	125	80	53	26
2	336	17	87	99	151.7	549	265	183	147.4	158	124	81	53	23
3	337	18	91	92	153.1	548	268	179	148.7	146	124	80	51	23
3 4	338	19	86	93	148.2	544	262	174	144.0	154	118	72	46	23
5	339	20	68	75	142.4	535	252	172	138.3	140	116			24
6	340	21	89	88	142.3			166	138.1	138	108			13
7	341	22	95	114	153.2	553	261	175	148.7	141	109	74	50	23
8	342	23	119	128	162.0	546	258	183	157.1	145	107	74	51	24
9	343	24	103	120	153.9	542	232	181	149.3	153	112	74	55	25
10	344	25	108	117	133.8	548	261	182	129.8	143	107	72	48	21
11	345	26	105	105	143.1	544	255	173	138.8	137	101	71	50	23
12	346	27	102	112	143.3	546	257	174	138.9	137	102	72	48	24
13	347	1	84	101	144.2	531	243	168	139.7	133	101	73	52	
14	348	2	83	90	144.4	562	235	167	139.9	132	102	71	56	72
15	349	3	72	73	141.6	538	256	167	137.2	132	103	73	51	29
16	350	4	60	61	140.5	547	261	168	136.1	134	103	71	48	22
17	351	5	49	64	146.1	574	262	168	141.5	135	103	72	49	24
18	352	6	60	61	154.7	575	269	171	149.8	136	106	72	47	24
19	353	7	50	53	138.0		268	170	133.6	134	103	73	49	25
20	354	8	50	53	134.7	553	271	166	130.4	132	102	75	50	24
21	355	9	43	47	135.3	510	252	158	130.9	124	102	65	42	20
22	356	10	39	38	128.8	536	271	160	124.6	129	104	72	48	23
23	357	11	47	44	139.8	576	276	165	135.2	130	110	81	53	26
24	358	12	58	60	139.4	560	266	167	134.9	136	111	78	50	23
25	359	13	66	72	144.4	558	262	170	139.6	138	111	74	50	24
26	360	14	81	93	144.9		287	180	140.2	146	117		53	24
27	361	15	100	107	166.8	550	293	193	161.4	144	117	77	51	23
28	362	16	121	122	184.4	568	306	217	178.3	171	130	79	49	19
29	363	17	96	99	182.8	560	319	225	176.8	170	125	83	53	23
30	364	18	99	102	179.0	553	325	235	173.1	171	124	83	54	22
31	365	19	92	97	174.6	584	284	209	168.8	164	120	75	51	22
MEAN			81.6	86.4	150.1	551	268	179	145.5	143	111	74	50	24

The International numbers shown above are preliminary values; the American numbers are final.

`


28

* May 1996 marks Cycle 22's mathematical minimum. ** October 1996 marks the consensus minimum NGDC is now using.

Observed and Predicted Numbers. For the end of Cycle 22, and the rise and decline of Cycle 23, the table above lists observed smoothed sunspot numbers up to the one that includes the most recent monthly mean. We based these smoothed values on final monthly means through Jun 1998 and on provisional numbers thereafter. Table entries with numbers in parentheses below them denote predictions by the McNish-Lincoln method. (See page 9 in the Jul 1987 supplement to *Solar-Geophysical Data.*) Adding the number in parentheses to the predicted value generates the upper limit of the 90% confidence interval. Subtracting the number from the predicted value generates the lower limit. Consider, for example, the June 1999 prediction. There exists a 90% chance that in June 1999, the actual smoothed number will fall somewhere between 107 and 139.

Points to Ponder. The McNish-Lincoln prediction method generates useful estimates of smoothed, monthly mean sunspot numbers for no more than 12 months ahead. Beyond 12 months, the predictions regress toward the mean of all 15 cycles of observations used in the computation. Moreover, the method remains very sensitive to the date defining the onset of the current cycle, that is, to the date of the most recent sunspot minimum. The new cycle predictions tabulated above are based on the consensus minimum value of 8.8 that occurred in October 1996. **Note:** Please visit http://www.sec.noaa.gov for solar minimum and Cycle 23 discussions. Mean Monthly Sunspot Numbers Jan 1950 - Dec 1998

1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

Year	r Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1950	101.6	94.8	109.7	113.4	106.2	83.6	91.0	85.2	51.3	61.4	54.8	54.1	83.9
1951		59.9	55.9	92.9	108.5	100,6	61.5	61.0	83.1	51.6	52.4	45.8	69.4
1952	40.7	22.7	22.0	29.1	23.4	36.4	39.3	54.9	28.2	23.8	22.1	34.3	31.5
1953	26.5	3.9	10.0	27.8	12.5	21.8	8.6	23.5	19.3	8.2	1.6	2.5	13.9
1954	0.2	0.5	10.9	1.8	0.8	0.2	4.8	8.4	1.5	7.0	9.2	7.6	4.4 m
1955	23.1	20.8	4.9	11.3	28.9	31.7	26.7	40,7	42.7	58.5	89.2	76.9	38.0
1956	73.6 165.0	124.0	118.4	110.7	136.6	116.6	129.1	169.6	173.2	155.3	201.3	192.1	141.7
1957 1958	202.5	130.2 164.9	157.4 190.7	175.2 196.0	164.6	200.7	187.2	158.0	235.8	253.8	210.9	239.4	190.2 M
1959	217.4	143.1	185.7	163.3	175.3 172.0	171.5 168.7	191.4 149.6	200.2 199.6	201.2	181.5	152.3	187.6	184.8
1960	146.3	106.0	102.2	122.0	119.6	110.2	121.7	199.0	145.2 127.2	111.4 82.8	124.0 89.6	125.0	159.0
1961	57.9	46.1	53.0	61.4	51.0				3.3.3.3.3.5.3.3.4.5.3.3.3.5.s.s.s.s		CONTRACTOR CONTRACTOR	85.6	122.3
1961	38.7	46.1 50.3	53.0 45.6		51.0	77.4	70.2	55.8	63.6	37.7	32.6	39.9	53.9
1962		24.4	45.6	46.4 29.3	43.7	42.0	21.8	21.8	51.3	39.5	26.9	23.2	37.6
1963	15.3	17.7	16.5	29.3 8.6	43.0 9.5	35.9 9.1	19.6	33.2	38.8	35.3	23.4	14.9	27.9
1965	17.5	14.2	11.7	6.8	9.5 24.1	9.1 15.9	3.1 11.9	9.3	4.7	6.1	7.4	15.1	10.2 m
1966	28.2	24.4	25.3	48.7	45.3	47.7	56.7	8.9 51.2	16.8	20.1	15.8	17.0	15.1
1967	110.9	93.6	111.8	69,5	86.5	67.3	91.5	107.2	50.2 76.8	57.2 88.2	57.2	70.4	47.0
1968	121.8	111.9	92.2	81.2	127,2	110.3	96.1	107.2	117.2	107.7	94.3 86.0	126.4	93.8
1969	104.4	120.5	135.8	106.8	120.0	106.0	96.8	98.0	91.3	95.7	93.5	109.8 97.9	105.9 M 105.5
1970	111.5	127.8	102.9	109,5	127.5	106.8	112.5	93.0	99.5	86.6	95.2	83.5	105.5
1971	91.3	79.0	60.7	71.8	57.5	49.8	81.0	61.4	en executive a company and				
1972	61.5	88.4	80.1	63.2	80.5	49.8 88.0			50.2	51.7	63.2	82.2	66.6
1973	43.4	42.9	46.0	57.7	42.4	39.5	76.5 23.1	76.8 25.6	64.0 59.3	61.3 30.7	41.6 23.9	45.3	68.9
1974	27.6	26.0	21.3	40.3	39,5	36.0	55.8	33.6	40.2	47.1	25.9 25.0	23.3 20.5	38.0 34.5
1975	18.9	11.5	11.5	5.1	9.0	11.4	28.2	39.7	13.9	9.1	25.0 19.4	20.5 7.8	34.5 15.5
1976	8.1	4.3	21.9	18.8	12.4	12.2	1.9	16.4	13.5	20.6	5.2	15.3	12.6 m
1977	16.4	23.1	8.7	12.9	18.6	38.5	21.4	30.1	44.0	43.8	29.1	43.2	27.5
1978	51.9	93.6	76.5	99.7	82.7	95.1	70.4	58.1	138.2	125.1	97.9	122.7	92.5
1979	166.6	137.5	138.0	101.5	134.4	149.5	159.4	142.2	188.4	186.2	183.3	176.3	92.5 155.4 M
1980	159.6	155.0	126.2	164.1	179.9	157.3	136.3	135,4	155.0	164.7	147,9	174.4	154.6
1981	114.0	141.3	135.5	156.4	127.5	90.9	143.8	158.7	167.3	162.4	137.5	150.1	140.4
1982	111.2	163.6	153.8	122.0	82.2	110.4	106.1	107,6	118.8	94.7	98.1	127.0	115.9
1983	84.3	51.0	66.5	80.7	99.2	91.1	82.2	71.8	50.3	55.8	33.3	33.4	66.6
1984	57.0	85.4	83.5	69.7	76.4	46.1	37.4	25.5	15.7	12.0	22.8	18.7	45.9
1985	16.5	15.9	17.2	16.2	27.5	24.2	30.7	11.1	3.9	18.6	16.2	17.3	17.9
1986 1987	2.5	23.2	15.1	18.5	13.7	1.1	18.1	7.4	3.8	35.4	15.2	6.8	13.4 m
1988	10.4 59.0	2.4 40.0	14.7 76.2	39.6	33.0	17.4	33.0	38.7	33.9	60.6	39.9	27.1	29.4
1989	161.3	165.1	131.4	88.0 130.6	60.1 138.5	101.8	113.8	111.6	120.1	125.1	125.1	179.2	100.2
1990	177.3	130.5	140.3	140.3	132.2	196.2 105.4	126,9 149,4	168.9	176.7	159,4	173.0	165.5	157.6 M
255555555555555555	12556745767676767676767576753	*********	222855666676676865666667	0.000 C	SCHEROLAND AND A SAME AND A	Address over many subscriptions		200.3	125.2	145.5	131.4	129.7	142.6
1991	136.9	167.5	141.9	140.0	121.3	169.7	173.7	176.3	125.3	144.1	108.2	144.4	145.7
1992 1993	150.0 59.3	161.1 91.0	106.7	99.8	73.8	65.2	85.7	64.5	63.9	88.7	91.8	82.6	94.3
1993	59.3 57.8	35.5	69.8 31.7	62.2	61.3	49.8	57.9	42.2	22.4	56.4	35.6	48.9	54.6
1994	24.2	35.5 29.9	31.7 31.1	16.1	17.8 14.5	28.0	35.1	22.5	25.7	44.0	18.0	26.2	29,9
1996	11.5	29.9 4.4	9.2	14.0		15,6	14.5	14.3	11.8	21.1	9.0	10.0	17.5
1990	5.7	4.4 7.6	9.2 8.7	4.8 15.5	5.5	11.8	8.2	14.4	1.6	0.9	17.9	13.3	8.6 m
1998	31.9	40.3	6.7 54.8	53.4	18.5 56.3	12.7	10.4	24.4	51.3	22.8	39.0	41.2	21.5
	are prelimina				00,0	70.7	66.2	91.7	92,9	55.6	73.6	62.4	62.5

Values are preliminary after Jun 98. For the yearly means, each 'M' marks a sunspot cycle maximum and each 'm' a minimum.

Ha SOLAR FLARES

DECEMBER 1998

	27.2 4						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					002-000-020-02		
	Start	Max	End			NOAA/ USAF	CM	P	Dur	Imp		0bs	Area Measurement Time Apparent Corr	
Sta Day	(UT)	(UT)	(UT)	Lat	CMD	Region	Мо	Day	(Min)	Opt Xray	See	Туре	(UT) (10-6 Disk) (Sq De	g) Remarks
LEAR 01	0409	0411	0416	s23	W44	8392	11	27.9	7	SF	3	Е	37	
	0522 0526	0528 0529	0538 0532			8395 8395	12	2.3	16 6	SF C 1.0 SF	3	E	16	9.5E-04
GOES	0646	0650	0655			8395	12	2.5	9	SF C 1.2	2	5	10	6.2E-04
	0649	0649 1122	0654 1127			8395	12	2.3	5 11	SF SF C 2.1	3	Ε	26	1.1E-03
	1116 1120E	1122			E09 E09	8395	12	2.2	12D	SF U Z.I	2	E	26	F
GOES	1315	1321	1331			0707			16	C 1.1				9.7E-04
	1620 1622	1626 1623	1630 1632			8397 8397	12	6.1	10 10	SF C 1.3 SF	3	Е	58	6.6E-04
	1624	1624	1718	N15	E57	8397	12	6.0	54	SF	3	Е	36	F
HOLL GOES	1632 1721	1633 1727	1637 1742	N16	E57	8397	12	6.0	5 21	SF C 1.2	3	E	39	1.3E-03
GOES	1800	1816	1841			8402			41	1F C 5.0	_		-	9.0E-03
RAMY HOLL	1802 1807	1803 1809	1816 1854			8402 8395	12 12	7.0	14 47	SF 1F	3 3	E E	32 137	UF
HOLL	1810	1812	1821			8402	12	6.8	11	SF	3	E	15	01
HOLL	1822 2043	1824 2050	1850	N18	E68	8402	12	6.9	28 17	SF	3	Е	67	1.7E-03
GOES	2043	2000	2100						17	C 2.0				1.72-05
GOES 02		0111	0128			8395	40	4 7	28	SF C 1.2	-7	-	25	1.8E-03
LEAR LEAR	0110 0722	0114 0728	0119 0752			8395 8395	12 12	1.7	9 30	SF SF	3 3	E E	25 17	F
LEAR	0755	0756	0805	N21	W10	8395	12	1.6	10	SF	3	E	12	
	0905 0906	0909 0910	0912 0918			8402 8402	12	6.9	7 12	SF C 1.3 SF	3	E	62	4.9E-04
GOES	1227	1236	1305			0402	16	0.7	38	в 9.6	2	-		1.9E-03
RAMY		1521U 1625					12	1.6	7D	SF	3 3	E E	37 53	
RAMY RAMY	1624 1702	1704	1638 1724			8402 8395	12 12	6.7 1.6	14 22	SF SF	3	E	16	н
GOES	1844	1849	1851						7	C 1.1				3.8E-04
-GOES 03	0434	0438	0444	N14	E34	8397			10	SF C 1.0				5,4E-04
	0439	0440	0443	N14	E34	8397	12	5.8	4	SF	3	Ε	16	F
	1159 1204	1207 1205	1220 1237			8395 8395	12	1.6	21 33	SF C 2.0 SF	2	E	79	1.9E-03 F
HOLL	2019	2019	2025	N12	W15	8401	12	2.7	6	SF	3	E	42	
HOLL HOLL	2115 2211	2119 2219	2125 2235			8402 8402	12 12	7.1 6.8	10 24	SF SF	3 3	E E	29 34	
NULL	2211	2617	2232	120	EDO	0402	12	0.0	24	91	5	-	74	
GOES 04		0116	0120						9	C 1.3				5.4E-04 6.0E-04
GOES GOES	0249 1102	0253 1106	0300 1110	N15	E25	8402			11 8	C 1.0 SF C 1.3				4.7E-04
LSVTO	1105	1106	1115			8402	12	6.3	10	SF	3	Ε	40	7 4 7 04
GOES GOES	1223 1709	1227 1716	1230 1724	N27	W24	8399			7 15	B 8.5 SF C 1.8				3.1E-04 1.3E-03
RAMY		17150					12	2.8	23D	SF	2	Е	54	
GOES 05	0433	0437	0439						6	C 1.0				2,8E-04
GOES	1743	1754	1807			8393			24	SF C 1.5				1.8E-03
HOLL HOLL	1745 1801	1747 1803	1757 1806			8399 8393		2.7 29.9	12 5	SF SF	3 3	E E	21 23	
HOLL	1819	1820	1832			8399		2.5	13	SF	ž	Ē	12	
GOES	2317	2324	2335						18	C 1.2				1.1E-03
GOES 06	0004	8000	0013						9	C 1.2				5.5E-04
GOES	0255	0300	0306						11	B 9.3				5.5E-04
GOES GOES	0333 0738	0339 0750	0345 0804						12 26	C 1.6 C 1.6				8.3E-04 2.0E-03
	1440	1446	1452			8402			12	SF C 1.0		-		6.3E-04
└─HOLL HOLL	1442 1446	1442 1448	1446 1501			8402 8402	12 12	6.8 6.7	4 15	SF SF	3	E E	16 25	
HOLL	1515	1516	1518	N22	W60	8398		2.0	3	SF	3	Ē	14	
	1600 1601	1612 1610	1635 1631		E68 E68	8397	12	11.8	35 30	SF C 1.2 SF	3	E	77	2.3E-03
HOLL	1617	1622	1650	N15	W16	8397	12	5.5	33	SF	3	E	19	
	1903 1904	1905 1906	1914D 1909					6.9 6.9	11D 5	SF SF	3 3	E E	34 20	
	1704					UTVL.	12	0.9	<i>ر</i>	51			<u>د</u> ر	

DECEMBER 1998

Sta	Day	Stari (UT)	t Max			- 010	NOAA/ USAF	СМР	Dur		Imp		Obs	Time		Corr	-
		2343	(UT) 2352			mu	Region	Mo Day	(Min) 18	Up	c 1.6		Туре	(UT)	(10-6 Disk)	(Sq Deg)	Remarks
									10		C 1.0						1.4E-03
		0357 0400	0408 0409				8402 8402	12 6.5	19 34		C 1.7		-		<i></i>		1.6E-03
	s	0614	0617				8405	12 0.2	- 54	SF SF	в 8.9	3	E		94		F 3.0E-04
		0616	0616				8405	12 11.7	4	\$F		3	E		15		5.02 04
		0853 0855	0858 0856	0903 0901			8402 8402	12 6.8	10 6	SF SF	B 9.0	3	E		20		4.8E-04
SVT				0908	N18	W11	8402	12 6.5	6D			3	Ē		13		F
-LEA		0902 0946	0903 1001	0907 1014			8402 8402	12 6.8	5 28	SF	c 1.3	3	Ε		41		0.4- 4-
LEA	R	0949	0950	0955	N17	' W09	8402	12 6.7	6	SF	6 1.0	3	E		16		2.0E-03
LEA GOE		0953 1434	0956 1442	1001 1506	S23	W03	8404	12 7.2	8 32	SF	c 2 7	2	Е		13		
HOL	Ĺ	1537	1538	1543			8405	12 11.8	6	SF	C 2.3	3	Е		22		3.8E-03
		1629 1632	1633 1634	1643 1643			8405	40 44 7	14		C 1.9	_					1.5E-03
-GOE		2143	2154	2210			8405 8405	12 11.7	11 27	SF SF	с 3.9	3	Е		13		4.6E-03
L-Holi	-	2146	2150	2217				12 11.8	31	SF		3	E		95		4.05-03
		0751	0753	0758	s21	W21	8404	12 6.7	7	SF		3	Е		14		
LEAR		0804 1122	0805 1132	0808		E15		12 9.5	4	SF		3	E		11		
GOES		1230	1321	1137 1336			8405 8404	12 11.3	15 66	SF SF	c 2.9	2	E		14		0 95 07
SVTC		1232	1233	1324	\$25	W18	8404	12 7.1	52	SF		3	E		33		9.8E-03 F
		1400 1403E	1407 1403U	1413 I 1431D	S14 S14	E40 E40	8405 8405	12 11.6	13 28D	SF SF	c 5.7	2	ε		20		3.4E-03
GOES	\$	1527	1541	1551			8404	IL 11.0	24		c 1.8	2	Ę		29		НТ 2.1E-03
RAMY		1528 1613	1833 1618	1940D 1631	s23	W24	8404	12 6.8	252D	1F		3	Е		120		FT
GOES	5	1632	1638	1645					18 13		C 2.0 C 3.5						1.8E-03 2.2E-03
HOLL HOLL		1808 1931	1851 1936	1924 1940		W27		12 6.7	76	1F		3	Е		135		
RAMY		1940	1930	1940	525 S14	w25 E38		12 7.0 12 11.7	9 16	SF SF		3 3	E E		35 22		
HOLL		1940	1944	1947	s23	W23	8404	12 7.0	7	SF		3	E		14		
RAMY GOES		2012 2015	2012	2044 2025	N27 N27	W75 W75	8399 8404	12 3.0	32 10	SF	3.1	3	Е		12		4 7
-HOLL		2128	2144	2210	S14	E37	8405	12 11.7	42	SF		3	E		20		1.7E-03
		2129 2233	2135 2236	2152 2240		E37 W75		12 3.0	23 7	SF (SF	2 1.8	3	E		16		2.3E-03
0050	00	0107	0400									5			10		
LEAR		0107 0124	0122 0126	0204 0131		E38 E38		12 11.9	57 7	SFO	: 1.9	3	E		18		5.6E-03
LEAR		0328	0330	0335	N23	W81	8395 ⁻	12 2.9	7	SF		3	E		21		
LEAR GOES		0416 0503	0416 0511	0419 0514		W77 W34		12 3.1	3 11	SF	: 1.2	3	E		10		
LEAR		0507	0508					12 6.6	13	SF	· 1-2	3	Е		31		7.4E-04 E
GOES GOES		0550 0644	0554 0655	0558 0710					8		1.4						6.2E-04
GOES		0812	0817	0828	S14	E30	8405		26 16		1.2						1.7E-03 1.5E-03
		0815	0816			E30		12 11.6	21	SF		3	Е		46		E
SVTO GOES		1050 1114	1056 1132	1059 1140	NZÖ	W85	8399 1	2.8	9 26	SF	3.1	3	E		22		(0- 07
SVTO		1147	1147	1150		W82		2 3.0	3	SF		3	Е		23		4.2E-03
		1158 1206	1206 1211u	1228 1227D	\$15 \$15	E29 E29	8405 8405 1	2 11.7	30 210		2.1	7	-				3.7E-03
C-GOES		1534	1547	1552		629 W40			21D 18	SF SF C	1.8	3	Ε		19		F 1.5E-03
L-HOLL			1546 1740			W40 3	8402 1	2 6.6	27	SF		3	E		64		F
HOLL			1740		S14 S14	E26 E26 (8405 1	2 11.7	11 66	1N C 1N	5.9	3	E		148		2.3E-03
GOES		1801	1806	1810					9	C	3.2	-	-		140		1.4E-03
-GOES HOLL		2210 2210E	2216 2217			E40 8 E40 8		2 13.0	17 21D	SF C SF	1.1	3	E		77		9.8E-04
LEAR						E48 8		2 13.6	10	SF SF		2	E E		37 22		E
LEAR	10	0318	0323	0329	S16	E25 8	3405 1	2 12.0	11	SF		3	E				
GOES	1	0617	0621	0627					10	C	1.2	2	-		16		E 6.8E-04
GOES		0743	0808	0819	S19	E34 8	3408		36	SF C	1.4						2.7E-03

Ha SOLAR FLARES

DECEMBER 1998

page and the second						NOAA/							Area Measurer	nont	
	Start	Мах	End			USAF	CMP	Dur	Imp		0bs	Time		Corr	
Sta Day		(UT)	(UT)	Lat	CMD		Mo Day		Opt Xray	See			(10-6 Disk)		Remarks
SVTO 10	0805	0815	0820	c10	E7/	8408	12 12.9	15	SF	3	E		12		<u> </u>
SVTO	0821	0824	0826			8408	12 12.9		SF	3	Ē		13		
RAMY	1550	1556	1600	s23	W45	8404	12 7.2	10	SF	3	Ε		17		
RAMY	1739	1742	1746			8404	12 7.1	7	SF	4	Ε		18		
RAMY	1906	1909	1930			8405	12 11.8	24	SF	3	Ε		11		7 05 01
GOES	2343 2348	2348 2349	2351 2353			8404 8404	12 7.1	8 5	SF B 9.3 SF	3	Ε		27		3.8E-04
L-LEAR	2340	2.347	6000	322	M)	0404	16 1.1	2	SF	5	E		E 1		
GOES 11		0326	0336			8404		18	C 1.3						1.2E-03
LEAR	0324	0325	0330			8409	12 14.3	6	SF	3	E		16		
└─LEAR LEAR	0325 0333	0326 0334	0331 0343			8404 8404	12 7.0 12 7.0	6 10	SF SF	3 3	E E		16 19		
GOES	0428	0431	0440			8405	12 7.0	12	SF C 1.2	5	L		17		8.6E-04
	0429	0431	0448			8405	12 11.7		SF	3	Ε		48		F
LEAR	0542	0601	0614			8404	12 7.0	32	SF	3	Ε		46		
LEAR	0719	0721	0723			8405	12 11.7		SF	3	E		11		-
	0912 0927	0917 0927	0935 0936			8405 8408	12 11.7	23 9	SF SF	2 2	E E		38 11		F
LEAR LEAR	0955	0956	0958			8408	12 12.9	3	SF	2	E		17		i.
r-GOES	1141	1149	1156			8408		15	SF C 1.3	_	_				1.0E-03
			1203D				12 13.0	16D	SF	2	Ε		34		F
SVTO			1222D				12 13.0	25D	SF	3	E		22		F
	1653 1653	1656 1656	1706 1707			8408 8408	12 12.9 12 12.8	13 14	SF SF	3 3	E E		29 32		F
	1657	1657	1715			8409	12 14.1	18	SF	3	Ē		10		•
	1658	1658	1715			8409	12 14.2	17	SF	3	Ε		12		
RAMY	1729	1752	1819			8408	12 13.0	50	SF	3	Е		67		F
-GOES	1739	1749	1758			8408	17 17 0	19	SF C 3.4	7	-		70		2.8E-03
L-HOLL GOES	1740 2007	1747 2011	1815 2014			8408 8409	12 12.8	35 7	SF SF C 1.1	3	E		72		F 4.2E-04
	2007	2010	2015			8409	12 14.1	6	SF	3	Ε		15		4.22 04
RAMY	2009	2010	2018			8409	12 14.3	9	SF	3	E		23		F
LEAR 12	0205	0208	0216	c20	c 17	8408	12 13.1	11	SF	3	Ε		20		н
LEAR	0237	0239	0245			8408	12 13.0	8	SF	3	E		20		H
LEAR	0246	0248	0255			8408	12 13.0	9	SF	3	Ε		17		
LEAR	0353	0409	0415			8405	12 11.5	22	SF	3	Е		27		Н
LEAR	0418	0420	0425			8409 8409	12 13.7	7	SF C 1 1	3	E		21		5.1E-04
	0422 0425	0428 0429	0431 0439			8409	12 13.1	14	SF C 1.1 SF	3	E		37		J.12-04
GOES	0509	0513	0515			8409	12 1311	6	SF C 1.0	-	-		2.		3.0E-04
	0511	0513	0519			8409	12 13.8	8	SF	3	Е		41		
LEAR	0611	0616	0622			8409	12 13.8	11	SF	3	E		10		
LEAR	0626 0701	0632 0703	0636 0710			8409 8411	12 13.8	10 9	SF SF	3 3	E E		16 15		Ε
LEAR LEAR	0737	0738	0743			8411 8409	12 17.2		SF	3	Ē		21		
LEAR	0943	0943	0946			8408	12 12.9		SF	ž	Ē		11		
LEAR	0947	0952	1004			8405	12 11.5		SF	2	Е		75		.
GOES	1248	1251	1253			8409	47 47 7	5	SF C 1.3	7	-		40		3.7E-04
	1250E	12500	1254D 1505D				12 14.6 12 6.9		SF SF	3 3	E E		18 24		
RAMY RAMY	1603	1603	1613			8408	12 13.0		SF	3	E		11		
GOES	1918	1922	1926	S20	W69	8404		8	SF C 1.3						5.5E-04
HOLL	1920	1922	1927	S20	W69	8404	12 7.5		SF	3	Е		37		/ -·
GOES	2108 2304	2112 2311	2114 2321	¢10	U70	8404	12 7 4	6 17	C 2.5 SF	3	E		29		6.3E~04
	2304	2312	2321			8404 8404	12 7.6 12 7.3		SF	э З	E		29 16		
GOES	2317	2320	2322			8404		5	SF C 1.6	-	-				4.0E-04
GOES	2323	2328	2332	S16	W18			9	1F C 3.0						1.2E-03
-LEAR	2325	2327	2341			8405 8405	12 11.6		1F 15	3 3	E E		101 123		
L-HOLL	2325	2328	2339	312	WIÖ	8405	12 11.6	14	1F	c	c		123		
GOES 13		0156	0158			8409		10	C 2.7				_		9.2E-04
LEAR	0149	0150	0153			8408	12 13.1		SF	3	E		18		
LEAR LEAR	0153 0155	0156 0200	0159 0206			8404 8409	12 6.9 12 14.3		SF SF	3 3	E E		99 23		
GOES	0323	0200	0208	920	£10	0407	16 14.2	14	ъг С 1.8	-	5		6.3		1.2E-03
GOES	0430	0436	0445	S16	W04	8408		15	SF C 1.4						1.0E-03
' <u> </u>															

DECEMBER 1998

	Star	t Max	End			NOAA/ USAF		мр	Due		τ.~		-	0 .		Area Measure		
Sta Day					t CMD	Region	Мо	Day	Dur (Min)	0	In pt		See	Obs 9 Type	Time (UT)	Apparent (10-6 Disk)	Corr (Sq Deg)	Remarks
LEAR 13 GOES	0432 0512			s16	5 W04	8408	12	12.9	18 6	S		3.0	3	Е				
GOES	0707	0712	0715		2 W85				8	S		5.5						7.3E-04 1.3E-03
LEAR SVTO	0711 0946		0719 0950			8404 8411		6.8	8	S			3	E		90		
GOES	1030		1041	\$19	₩04	8408	12	17.2	4 11	SI SI		3.7	3	Е		12		F 1.7E-03
L-SVTO	1032		1057			8408		13.1	25	S	F		3	Е		50		FE
SVTO SVTO	1245 1354		1256 1402			8408 8408		13.1 13.1	11 8	SI SI			3 3	E E		26		
RAMY	1532	E 1532L	J 1556D) s16	5 W10	8408		12.9	24D	SE			3	E		12 25		
HOLL GOES	1817 1845	1821 1855	1828 1908	s16	W12	8408	12	12.8	11	SF			3	E		15		F
GOES	2018	2022	2025						23 7			1.2						1.5E-03
GOES	2037	2043	2052			8408			15		C	2.8						4.3E-04 1.7E-03
L-HOLL	2042		2103	S18	W10	8408	12	13.1	21	SF	:		3	E		48		
CLEAR 14	0001 0007	0010 0010	0012 0029			8408 8408	12	13.1	11 22	SN SN		7.0	3	E		94		1.7E-03
LEAR	0152	0153	0201	S16	W14			13.0	9	SF	:		3	Ε		31		
GOES LEAR	0348 0358	0353 0400	0357 0407		W15	8408	12	13.0	9 9			1.2	7	-				5.4E-04
GOES	0516	0520	0525	520	N 1 J	0400	12	12.0	9	1F		7.3	3	E		100		3.6E-04
GOES SVTO	0624 0734	0628 0735	0631 0739	c10	1117	0/00	40	47 0	7			3.6	-	_				9.6E-04
LEAR	0743	0743	0746					13.0 13.0	5 3	SF SF			3 3	E E		16 12		F
SVTO	0847	0847	0854	S19	W16	8408		13.1	7	\$F	:		3	Ē		12		
	0938 0941	0944 0943	0948 1007			8408 8408	12	12.9	10 26			7.3	2	-				2.3E-03
∟svto	0941	0944	1008					12.9	27	SF SN			2 3	E E		61 53		F
GOES GOES	1106 1136	1110 1140	1120						14			1.3				50		9.9E-04
GOES	1214	1218	1143 1225						7 11			1.7 1.9						6.5E-04
RAMY	1425	1425	1430					13.1	5	SF			3	E		11		1.1E-03
HOLL GOES	1654 1727	1655 1734	1703 1738	\$18	W24	8408	12	12.9	9 11	SF		1.9	3	Ε		11		F
GOES	1913	1919	1923						10			2.6						1.1E-03 1.1E-03
GOES 15				- 47					14D			1.3						
	0737 0738	0738 0738	0742 0742					13.0 13.0	5 4	SF SF			3 3	E E		19		
LEAR	0825	0829	0835	S20	W30	8408		13.0	10	SF			3	Ē		19 13		
	0826 0828	0829 0828	0833 0837		W30 W30		17	47 4	7		B	7.3	-	_				2.8E-04
GOES	1047	1053	1057		W15		12	13.1	9 10	SF SF	С	1.0	3	E		11		F 5.1E-04
		10520			W15			14.3	3D	SF			3	Ε		17		F
	1309E	1310U 1417	1323	N24	E49		12	19.3	14D 6	\$F		7.0	3	E		44		F
GOES	1752	1801	1815						23			1.3						2.2E-04 1.6E-03
	1923 1925	1928 1926	1931 1934	\$10	W37	8/.09	· د ا	13.0	8	6 5		1.0	7	-				4.3E-04
	1930	1930			W38			12.9	9 15	SF SF			3 3	E E		38 45		
	2037	2041 2041U	2045	S18	W36				8	SF		7.5				12		3.1E-04
GOES	2332	2336	2339	\$10	MOO -	0400	2	13.1	9D 7	SF	B	6.4	2	Ε		14		2.4E-04
GOES 16					E21				21	SF	с	1.0						1.2E-03
	0133 0203	0133 0209		N21 S19	E21 : u//0	8410 1	2	17.7	8	SF			3	Е		20		F
LEAR	0208	0209			W40 W40	8408 1	2 ·	13.0	10 9	SF	ų	1.5	3	Е		28		6.7E-04
	0944	1001	1012						28			1.8	_	-		20		2.5E-03
	1043 1045	1047 1047		S25 S25	₩33 ₩33 (8409 1	2 '	13.9	7 12	SF SF	Ç	1.0	3	E		52		3.7E-04
GOES	1158	1203	1206	S28	W28 (8409			8	SF	С	1.2	-	•		JC		5.2E-04
	1200 1612	1203 1613	1209 1630D	S28 S18	W28 8 W50 8			14.3 12.9	9 180	SF			3	E		15		- * ·
L-HOLL	1614	1614	1632	s17	W50 8	8408 1		12.9	18D 18	SF SF			3 3	E E		16 16		
	1902 1905				W40 8 W39 8		· ·	7 7	12	SN	C !	5.4	-7					2.4E-03
				920	MJ7 (J+U7]	<u> </u>	3.7	18	SF			3	E		32		

Ha SOLAR FLARES

DECEMBER 1998

	64++4	Have	Fuel			NOAA/		D	T		0h a		Area Measurer		
Sta Day	Start (UT)	Max (UT)	End (UT)	Lat	CMD	USAF Region	CMP Mo Day	Dur (Min)	Imp Opt Xray	See	0bs Type	Time (UT)	Apparent (10-6 Disk)	Corr (Sq Deg)	Remarks
-RAMY 16		1910	1925	s28	W40	8409	12 13.7		SN	4	Е		36		
GOES	2012	2015 2200	2019 2215	c10	W53			7	C 1.0						3.7E-04
—GOES —HOLL	2149 2153	2200	2227			8408	12 12.9	26 34	1F C 4.0 1F	3	Е		111		4.8E-03
-GOES 17	0210	0215	0220	s16	W55	8408		10	SF B 9.2						4.9E-04
-LEAR	0213	0216	0219			8408	12 12.9	6	SF	3	Е		10		F
GOES LEAR	0224 0226	0230 0229	0235 0241		W54	8408	12 13.0	11 15	SF C 2.2 SF	3	E		74		1.1E-03
-GOES	0740	0745	0749		W46	0400	12 13.0	9	1N M 3.2	5	F		74		9.1E-0
-SVTO	0742	0747	0812			8409	12 14.3	30	1B	3	E		141		
-LEAR -GOES	0743 1054	0746 1059	0804 1105		W46 W50	8409	12 13.7	21 11	1N SF C 1.4	3	E		116		7.1E-04
-SVTO	1101	1101	1105	S28	W50	8409	12 13.5	4	SF	3	Ε		11		1112 0
RAMY			1131D				12 13.8	7D	SF	2	E		28		
-RAMY -SVTO	1240 1240	1241 1241	1244 1245			8409 8409	12 13.7 12 13.6	4 5	SF SF	3 3	E E		14 11		
RAMY	1339	1344	1348	N19	E78		12 23.5	9	SF	3	Ē		63		H
-GOES	1412	1418 14150	1422	S28		8409	10 1/ 1	10 27D	SN C 7.2	2	F		71		2.5E-0
-HOLL •Ramy	14156	14150	1442			8409	12 14.1 12 13.6	26	SF SN	2 3	E E		85		F
RAMY	1425	1425	1428	N19	E78		12 23.5	3	SF	3	E		14		
RAMY	1459	1501 1549	1504 1551			8409	12 13.7	5 3	SF	3	E E		18 26		
RAMY HOLL	1548 1716	1717	1722			8409 8415	12 14.0 12 23.7	6	SF SF	3 3	E		20		
-HOLL	1739	1751	1802	N17	E70	8415	12 23.0	23	1F	3	Е		119		
-RAMY	1740	1751 1753	1759D 1757			8415	12 23.5	19D 11	1N 1F C 6.4	3	Е		109		2.6E-03
-goes -holl	1746 1808	1840	1911			8408	12 12.7	63	SF	3	Е		62		2.02-0.
-GOES	1809	1815	1837	S16	W66	8408		28	SF C 4.5	_					6.2E-0
HOLL HOLL	1812 1841	1813 1843	1828 1849			8409 8415	12 13.6 12 23.5	16 8	SF SF	3 3	E E		31 30		
HOLL	1900	1902	1914	N19	E75	8415	12 23.5	14	SF	3	E		26		
HOLL	1956	1957	2005			8415	12 23.5	9	SF	3	E		47		
HOLL GOES	2043 2112	2055 2119	2102 2127	N19	E75	8415	12 23.4	19 15	SF C 5.9	3	Ē		43		3,9E-03
HOLL	2246	2246	2251			8415	12 23.4	5	SF	3	Е		22		
HOLL	2253	2301 23020	2315			8415	12 23.4	22	1F	3	E		123		
LEAR GOES	2258	23020	2315			8415 8415	12 23.4	21D 12	1F 1F C 8.3	1	Е		136		3.9E-03
							40 47 0			7	-		20		
LEAR 18 -LEAR	0127	0127 0 30 5	0130 0315			8409 8415	12 13.8 12 23.5	3 13	SF SF	3 3	E E		20 67		
GOES	0302	0307	0311			8415		9	SF C 3.1	•	-		•.		1.2E-03
GOES	0343	0348	0351 0400			8415	12 23.4	8 16	SF C 2.5	3	F		68		9.7E-04
-LEAR LEAR	0344 0354	0357	0402			8406	12 13.2	8	SF SF	3	E E		15		
LEAR	0450	0453	0500	N19	E69	8415	12 23.5	10	SF	3	E		15		
-GOES -LEAR	0514 0527	0527 0527	0530 0529			8415 8415	12 23.5	16 2	SFC3.4 SF	3	Е		13		1.9E-03
GOES	0712	0716	0720	1110	20)	0412	12 23.3	8	C 1.3	5	-		13		5.7E-04
GOES	0742	0750	0758			8415	40.07.0	16	SF C 3.4	-	-		40		2.8E-0
SVTO SVTO	0748 0804	0751 0806	0759 0812			8415 8415	12 23.9 12 23.6	11 8	SF SF	3 3	E E		19 21		F
LEAR	0805	0806	0810	N19	E67	8415	12 23.4	5	SF	3	Ē		28		
LEAR	0937	0939	0943			8415	12 23.6	6	SF	3	E		28		F 0- 0
-goes -svto	0942 0944	0945 0945	0948 0952			8409 8409	12 13.9	6 8	SF C 1.6 SF	3	E		30		5.0E-04 F
-GOES	1247	1252	1254	S29	W66	8409		7	SF C 2.9						6.7E-04
-SVTO	1251 1251	1252 1253	1256 1257			8409 8409	12 13.2	5 6	SF	3 4	E		20 15		ш
-RAMY SVTO	1333	1338	1342			8409	12 13.4	9	SF SF	4 3	E E		15 17		H
-SVTO	1344	1345	1401	N18	E66	8415	12 23.6	17	SF	2	E		25		F
-RAMY -ramy	1346 1532	1346 1535	1350 1545			8415 8415	12 23.7 12 23.5	4 13	SF SF	4 3	E E		21 22		
-RAMI -HOLL	1532	1535	1545			8415	12 23.5	11	SF	3	E		22		
-GOES	1533	1537	1540	N20	E63	8415		7	SF C 1.3						5.2E-04
-GOES	1559	1605	1613	N19	E05	8415		14	SF C 2.0						1.4E-03

DECEMBER 1998

						NOAA/				A-1140								
<i></i>		rt Max				USAF	C	MP	Dur		I	mp		0bs	Time	Area Measure Apparent	ment Corr	
Sta Da	y (UT)	(UT)	(UT)	La	t : CML) Region	Мо	Day	(Min)) (pt	Xray	' See	е Туре		(10-6 Disk)		Remarks
-RAMY 1						8415		23.7		s	SF		3	E		22		
	1601 1713				9 E65	5 8415 8415	12	23.6		S	SF		3	E		21		
RAMY	1714	1726			9 E33		12	21.3	14 157	1	F	M 8.0	3	E		167		3.5E-02
HOLL	1717			N19	9 E64	8415	12	23.6	88	2	2N		3	Ē		451		U F
RAMY HOLL	1718 1720		2010	D N21 N23	1 659	8415 8414		24.0	370		B		3	E		368		UH
-HOLL	2028	2029				8415		21.4 23.4	170 4		F		3 3	E E		163 13		U
	2028					8415	12	23.4	5		F		3	Ē		16		
HOLL HOLL	2118 2150					8415 8415		24.1 24.0	5 5		F		3	E		15		
HOLL	2228	2232	2240			8415		24.0	12	S	F		3 3	E E		18 11		
HOLL	2233	2235	2237	N23	5 W16	8410	12	17.7	4	S			3	Ē		11		
SVTO 19			0952	s27	7 W84	8406	12	12.9	3	S	F		3	E		17		
SVTO SVTO	1004 1425		1009	\$30) W75	8409		13.5	5	S	F		3	Ε		26		
RAMY		1428 E 1440l) NIS) N20	' 204 F55			23.7	3D 28D	-			3	E		24		
RAMY	1835	1835	1838					24.1	3	5 5			3 3	E E		40 17		
LEAR	2315	2325	2332	N20	E50	8415	12	23.8	17	S			3	Ē		21		
LEAR 20		0417	0439					17.6	24	S	F		3	Е		25		
LEAR GOES	0442 0507	0447 0514	0454 0521			8410 8415	12	17.6	12	S		,	3	E		17		
LEAR	0511	0525	0535				12	23.6	14 24	5		3.4	3	Е		14		2.2E-03
GOES	0552	0600	0607			8415			15			: 1.5	0	-		14		1.2E-03
LEAR GOES	0557 0725	0557 0730	0607 0736	N18	E44	8415	12	23.6	10 11	SI		: 1.1	4	Ε		16		F
-SVTO	0846	0858	0921D	N20	E45	8415	12	23.8	35D	1)			3	E		151		6.2E-04
LEAR GOES	0849 0849	0859 0900	0916				12	23.9	27	11			3	E		105		
GOES	1234	1238	0903 1243	NZI	E40	8415			14 9	11		1.8						6.2E-03
RAMY	1854	1854	1857					26.3	3	SF			3	ε		11		1.0E-03
	2027 2028	2028 2028	2036 2033					27.2	2	SF			3	E		23		
HOLL	2157	2158	2204					27.7 27.7	5 7	SF SF			3 3	E E		25 34		
GOES 21	0417	0429	0440						23		~	F /				01		
GOES	1057	1100	1103						6			5.6 7.7						5.4E-03 2.4E-04
GOES GOES	1122	1127	1138						16		B	8.5						2.4E-04 7.3E-04
	1328 1333	1334 1333	1338 1343			8416 8416 ^{- 7}	12 :	26.4	10 10	SF SF		2.0	7	-		77		9.3E-04
RAMY	1533	1543	1552	N20	E61	8416 1		26.3	19	SF			3 3	E E		37 17		
RAMY RAMY	1621	1624 18370	1626	N20	E61			26.3	5	SF			3	E		10		
GOES	1937	1941	1948				2.2	26.5	14D 11	SF		1.4	2	Ē		28		-
HOLL	1942E	19420	2015D	N21	E26	8415 1	2 2	23.8	33D			1.4	3	Е		32		7.1E-04
GOES RAMY	2114 2123E	2118 21250	2122 21270	N18	E20	8415 1	2 2	23.4	8 4D	SF		9,4	2	E				4.0E-04
1040.00													٢	¢		12		
LEAR 22 GOES	1512	1517	0920 1522	N16	E48	8416 1	2 2	26.0	8 10	SF		4 7	3	E		14		F
GOES	1530	1534	1537	N18	E11	8415			7	SF		6.2 6.9						3.2E-04 2.5E-04
	1532 1533	1533 1533	1538	N18	E11	8415 1		3.5	6	SF			3	E		27		2.02-04
GOES	1705	1720	1536 1807	NIY	211	8415 1	2 2	3.5	3 62	SF		8.9	3	E		14		• • • • •
GOES	1822	1833	1845	N19					23	SF		1.2						2.9E-03 1.4E-03
└──RAMY ┌──RAMY	1825 2046		1843 2120D	N19 N18	E58			7.2	18	SF			3	E		22		
HOLL	2048	2050		N 18 N 19				3.5 3.5	34D 18	SN SF			2 3	E E		42		
GOES	2109	2113	2115	N19	E10	8415			6			1.3	5	-		42		3.7E-04
	2111 2345	2114 2351	2119 2355	N19	E10	B415 1	22	3.6	8 10	SF	~		3	Ε		32		
									10		L	6.9						2.5E-03
GOES 23 LEAR	0205 0230	0250 0231	0322 0252	N26 N26	W23 W23 I	R416 1	2 7	1.3	77 22		¢	2.2	7	F				6.9E-03
LEAR	0308	0309	0314	N26				1.3	22 6	SF SF			3 3	E		28 19		F F
GOES	0326	0332	0350						24		С	2.2	-	-		17		r 2.5E-03

Ha SOLAR FLARES

DECEMBER 1998

				nna lla an budwa		NOAA/							Area Measure	ment	
Sta Day	Start (UT)	Max (UT)	End (UT)	Lat	CMD	USAF Region	CMP Mo Day	Dur (Min)	Imp Opt Xray	See	0bs Type	Time (UT)	Apparent (10-6 Disk)	Corr (Sq Deg)	Remarks
GOES 23		0659	0743					150	M 2.3						1.1E-01
GOES GOES	0813 1157	0816 1206	0821 1213					8 16	M 1.1 C 5.0						5.0E-03 3.8E-03
HOLL RAMY	1800	1800 18120	1813 18410		E86		12 30.5 12 26.5	13 29D	SF SF	3 2	E E		21 28		FS
RAMY	2000	2002	2007			8419	12 26.2	7	SF	3	Ē		20		H
GOES 24		0054	0107	110	-70			27	C 5.0						7.0E-03
	0120 0122	0127 0126	0134 0156		E32 E32	8416	12 26.5	14 34	SF C 6.2 SF	3	E		73		4.4E-03 F
LEAR LEAR	0437 0813	0441 0822	0444 0831			8416 8416	12 26.5 12 26.5	7 18	SF SF	4 4	E E		13 17		
LEAR	0820	0823	0826			8421	12 30.0	6	SF	4	E		14		
	1129 1140	1145 11480	1214 1229D	¥20	F70	8421 8421	12 30.7	45 49D	M 1.7 SF	3	E		68		3.0E-02
	1143E	1147U	1213D				12 30.2	30D	SF	3	Ē		69		
GOES HOLL	1840 1904	1843 1910	1845 1922	N17	F22	8416	12 26.5	5 18	B 9.8 SF	3	E		26		2.6E-04
	1911E	1911U	1925	N17	E22	8416	12 26.5	14D	SF	3	E		39		
	2037 2048	2120 2122	2145 2216		E62 E62	8421	12 29.7	68 88	1F C 1.8 1F	3	ε		166		4.7E-03
GOES 25		0033	0037		E60			9	SF C 2.2	_	_				1.0E-03
LEAR GOES	0031 0337	0031 0414	0040 0449	N28	E60	8421	12 29.7	9 72	SF C 2.9	3	ε		13		9.1E-03
GOES	0531	0634	0727			8421	40.00.0	116	SF M 1.2	~	_		4-7		5.0E-02
	0541 0614	0541 0630	0546 0705			8421 8421	12 29.8 12 30.4	5 51	SF SF	3 3	E E		17 70		
GOES	1801	1806	1811	N30	E58	8421	10 70 7	10	SF C 1.0	7	-		14		5.2E-04
	1803 1833	1804 1833	1809 1836			8421 8419	12 30.3 12 25.8	6 3	SF SF	3 3	E E		14		
	2003 2005	2007 2006	2010 2013		E57	8421	12 30.3	7 8	SF C 1.3 SF	3	E		15		4.5E-04
GOES	2005	2020	2023	NC7	571	0421	12 30.5	6	C 1.1	J	L				3.5E-04
	2048 2050	2052 2051	2056 2058			8421 8421	12 30.5	8 8	SF C 1.2 SF	3	Е		26		5.2E-04
GOES 26	0044	0047	0049					5	C 1.3						3.3E-04
	0054 0137	0138 0137	0222 0149			8421 8421	12 30.4	88 12	SF C 2.0 SF	3	Е		15		7.8E-03 E
LEAR	0337	0337	0341	N29	E54	8421	12 30.4	4	SF	4	E		14		
	0507 0510	0512 0511	0515 0520			8421 8421	12 30.3	8 10	SF C 2.4 SF	4	Е		41		7.4E-04 E
GOES	0555	0559	0601	s21	E64	8422		6	SF C 7.8						1.2E-03
LEAR GOES	0558 0707	0558 0731	0602 0803	s21	E64	8422	12 31.1	4 56	SF C 1.7	4	E		38		4.3E-03
GOES	0919	0934	0955			8421	40 70 5	36	SF C 2.9		-		22		5.2E-03
└─LEAR ┌──RAMY	0922 1447	0924 1457	0929 1559			8421 8421	12 30.5 12 30.2	7 72	SF 1F	3 3	E E		22 102		F FE
-GOES	1447	1507	1524	N25	E46	8421	12 30.3	37	1F C 4.4	7	-				7.0E-03
	1449 1619	1456 1619	1541 1623			8421 8421	12 30.3	52 4	SF SF	3 3	E E		74 17		F F
HOLL RAMY	1628 1634	1634 1635	1645 1639	N27	W08	8419 8421	12 26.1 12 29.9	17 5	SF SF	3 3	E E		19 11		
	1634	1635	1652	N26	W08	8419	12 26.1	18	SF	3	E		49		
RAMY RAMY	1705 1711	1710 1713	1716 1718			8421 8415	12 30.1 12 24.0	11 7	SF SF	3 3	E E		15 28		
L-HOLL	1712	1713	1716	N21	W36	8415	12 23.9	4	SF	3	Е		17		
RAMY GOES	1721 1821	1721 1830	1727 1840	N21 N26	W09 W10	8416 8419	12 26.0	6 19	SF SF C 3.5	3	E		13		3.0E-03
-HOLL	1823	1827	1853	N26	W10	8419	12 26.0	30	SF	3	E		61		
└─RAMY ┌─RAMY	1824 1920	1825 1920	1854 1931			8419 8421	12 26.1 12 30.5	30 11	SF SF	3 3	E E		42 10		
L-HOLL	1921	1924	1930	N28	E47	8421	12 30.5	9	SF	3	Ε		18		
	1935 1936	1939 1940	1952 1948			8421 8421	12 30.4 12 30.4	17 12	SF SF	3 3	E E		21 20		
RAMY GOES	2030 2030	2030 2039	2033 2048	N18		8415	12 23.9	3 18	SF SF C 2.4	3	Ε		10		2.0E-03
1 3013	2030	2007	2040	1	11 i U			10	UI U 2.4						L.0L-0J

31	7
Dec	98

DECEMBER 1998

						NOAA/						Area Measurement	
Sta Day		: Max (UT)	End (UT)	Lat	CMD	USAF Region	CMP Mo Day	Dur (Min)	Imp Opt Xray	See	0bs Type	Time Apparent Corr (UT) (10-6 Disk) (Sq Deg)	Remarks
HOLL 26		2040	2119	N27	W10	8419	12 26.1	48	SF	3	E	40	
	2033	2037	2102D			8419	12 26.1	29D	SF	3	Ε	51	
	2336 2338	2344 2344	2349 2403		ฟ11 ม11	8419	12 26.1	13 25	SFC7.8 SF	4	E	67	3.8E-03
22/10	2000	2344	2400	MEO	re i i	0417	12 20.1	23	ər	4	E	67	F
GOES 27		0119	0124			8419		10	SF C 2.0				9.7E-04
L-LEAR GOES	0117 0129	0117 0135	0124 0140			8419 8419	12 26.2	7	SF	4	Ε	33	F
	0125	0134	0140			8419	12 26.0	11 9	SFC3.0 SF	4	E	31	1.5E-03 E
GOES	0307	0312	0321			8421		14	SF C 3.3		-	51	1.9E-03
	0310	0312	0322			8421	12 30.0	12	SF	4	Е	59	FE
LEAR LEAR	0420 0459	0421 0507	0430 0510			8419 8421	12 26.0 12 30.1	10 11	SF SF	4	E E	15	E
LEAR	0522	0524	0527			8421	12 30.1	5	SF	4	E	15 15	F F
GOES	0552	0559	0608			8421		16	SF C 2.2				1.7E-03
	0555 0650	0556 0652	0601			8421	12 30.1	6	SF	4	E	25	F
LEAR GOES	0703	0708	0700 0715	NZO	530	8421	12 30.2	10 12	SF C 2.2	4	E	15	1.3E-03
GOES	0915	0921	0927	N28	E35	8421		12	SF C 2.3				1.5E-03
LEAR	0916	0920	0936			8421	12 30.1	20	SF	4	Е	22	FE
RAMY RAMY	1542 1759	1542	1546 1805D	\$24	E39	8422	12 30.7	4	SF	3	E	12	
RAMY	1808	1810	18050			8422	12 20.9 12 30.7	6D 7	SF SF	3	E	38 25	s
GOES	1824	1836	1846	042	200	OALL		22	C 2.0	5	-	25	3 2.4E-03
GOES	2012	2019	2024		E33	.		12	SF C 3.4				1.9E-03
	2015 2117	2018 2123	2033 2129	N30	E33	8421	12 30.4	18	SF	3	E	47	0.5- 0/
	2150	2155	2201	N21	W19	8416		12 11	C 1.4 SF C 1.4				9.5E-04 7.9E-04
	2153	2153	2157			8416	12 26.4	4	SF	3	E	21	7.72 04
GOES	2338	2342	2346			8423		8	SF C 2.7	_			1.1E-03
GOES	2340 2353	2342 2359	2346 2410	N21 N18		8423	12 25.7	6 17	SF SFC3.6	3	Ε	19	7 05 07
LEAR	2355	2358	2419			8416	12 26.5	24	SF	3	E	41	3.0E-03
LEAR 28	0047	0054	0103	N25	W24	8419	12 26.2	16	SF	3	E	11	
LEAR	0056	0059	0101			8421	12 30.0	5	SF	3	Е	11	F
LEAR LEAR	0233 0357	0317 0403	0328 0438			8419 8419	12 26.1 12 26.1	55	SF	3 4	E	20	
LEAR	0446	0506	0520				12 26.1	41 34	SF SF	4	E E	21 17	F
r-GOES	0515	0531	0544	N28	E26	8416		29	SF M 1.4	•	-		1.9E-02
	0516	0521	0633			8421	12 30.2	77	SF	4	E	62	EH
	0536 0545	0548 0548	0623 0559	N25		8419	12 26.1	47 14	1B 1B M 3.1	4	E	118	ZE
LEAR	0547	0547	0620			8416	12 26.2	33	SF	4	E	69	1.9E-02 E
LEAR	0618	0626	0659			8422	12 30.6	41	SF	4	Ε	65	Ē
LEAR	0635	0637	0640				12 30.1	5	SF	4	Ε	11	
GOES SVTO	0841 0842	0845 0845	0847 0851			8419 8419	12 26.0	6 9	SF C 2.5 SF	3	Е	24	7.5E-04 F
LEAR	0843	0845	0850				12 26.0	7	SF	4	Ē	21	F
LEAR	0935	0937	0949	N25	₩32	8419	12 25.9	14	SF	3	E	13	Ε
SVTO SVTO	0949 1021	0950U 1030	0955D 1040				12 26.2	6D	SF	3	E	35	~
GOES		11050	11040	N27	Ψ.J.U	0417	12 26.1	19 6	SF C 2.8	3	Ε	24	F 7.0E-04
-RAMY	1149E	1157	1221			8419	12 25.8	32D	SF	3	Ε	75	1.02-04
	1152	1200		N26		0/40		16	SF C 5.7				4.3E-03
GOES SVTO	1305 1312	1310 1313				8419 8419	12 26.0	8 3	SF C 2.3 SF	7	c	13	8.1E-04
SVTO	1359		1406D				12 30.2	5 70	SF	3 3	E E	15	F
GOES	1454	1505	1520	S20	E27	8422		26	SF C 3.1				4.0E-03
RAMY RAMY	1515 1525	1517	1539 1544				12 30.7	24	SF	3	E	31	
	1713	1527 1718	1544 1724	N27 N24		0421	12 30.0	19 11	SF 1F C 5.0	3	Е	40	2 / 5-07
-RAMY	1715	1718	1741D	N23	₩34		12 26.1	26D	18 C J 10	3	Е	106	2.4E-03 H
	1716	1718	1743	N24	W34	8419	12 26.1	27	1F	3	Ē	115	F
-GOES -HOLL	1804 1811	1811 1813		N25			12 24 2	10	SF C 4.9	7	-	~	2.4E-03
RAMY	1815	1815		N25 N24			12 26.2	22 8	SF SF	3 3	E E	26 32	
				N26			12 29.9	6	SF	3	E	22	

Ha SOLAR FLARES

DECEMBER 1998

	0+		En d			NOAA/			_		_				Area Mea			
Sta Da	y (UT)	t Max (UT)	End (UT)	Lat	CMD	USAF Region	CN Mo		Dur (Min)	Oj	Imp ot Xray	See	Obs e Type	Time (UT)			Corr (Sq Deg)	Remarks
HOLL 2	8 2211	2214	2224	N26	W41	8419	12	25.7	13	SI		3	E		24			
-HOLL	2235		23560					29.9	81D	11		3	Ē		17			
—LEAR	2301	2323	2435			8421	12	30.0	94	11	-	3	E		139			
GOES	2315	2322	2333			8421			18		- M 1.7							1.2E-02
HOLL	2324	2335	2356D			8419	12	26.2	32D	11		3	Е		148	3		
GOES	2333	2338	2351	N24	W36				18	11	M 2.1							1.9E-02
LEAR 2	9 0044	0044	0048	N27	E14	8421	12	30.1	4	SF	•	3	Е		2	5		
LEAR	0059	0102	0105	N27	E14	8421		30.1	6	SF		3	E		1			
LEAR	0120	0124	0133			8421	12	29.9	13	SF	:	3	Е		23			
LEAR	0218	0221	0223			8419		26.1	5	SF		3	Е		20			F
LEAR	0231	0233	0236	NZS	E09	8421	12	29.8	5	SF		3	Ε		11			F
GOES LEAR	0549 0552	0601 0552	0624 0607	N27	LIX 2	8421 8419	10	24 0	35 15	e 6	C 2.2		-		4-	,		4.0E-03
LEAR	0552	0554	0600			8421		26.0	8	SF SF		4	E E		17 24			-
LEAR	0601	0605	0607			8421		29.8	6	SF		4	Ē		15			E
LEAR	0608	0610	0613			8421		29.9	5	SF		4	Ē		16			
LEAR	0619	0624	0627	N26	E10	8421	12	30.0	8	SF		4	Ε		17			E
GOES	0739	0744	0750			8421			11	SF	C 2.6							1.4E-03
LEAR	0741	0743	0751			8421		30.1	10	SF		4	E		28			E
L-SVTO	0741	0743	0752			8421		30.1	11	SF		3	E		26			F
SVTO SVTO	0828 0834	0939 0838	1042 0852			8421		29.7	134	SF		3	E		99			F
SVTO	0855	0904	0911			8419 8419		26.0	18 16	SF SF		3 3	E E		29			
GOES	0923	0941	0953			8421	16	23.7	30		c 5.1	2	c		18)		6.7E-03
LEAR	0926	0929	1006			8421	12	30.4	40	SF		2	Е		51			0.72-03
LEAR	1006	1010	1013			8421		30.1	7	SF		2	Ē		32			
-SVTO	1010	1014	1018	N26	W41	8419		26.2	8	SF		3	E		30			
L-LEAR	1012	1014	1017			8419		26.2	5	SF		2	Ε		25			E
LEAR	1014	1016	1018			8421		30.3	4	SF		2	Ε		16			
SVTO SVTO	1056	1109	1119D					29.8	23D	SF		3	E		15			_
SVTO	1107 1210	1216	1142D 1219			8422 8421		30.8	35D	SF		3	E		38			F
SVTO	1222	1231	1300			8421		30.0 30.0	9 38	SF SF		3	E		11 55			
GOES	1302	1306	1310	N24		0461	12	5010	8		C 2.0	J	L-			1		8.2E-04
∟svto		1305	1331D			8421	12	30.0	28D	SF		3	E		83			0.22 04
L-GOES	1506	1510	1516			8421			10	SF	C 1.6							8.6E-04
HOLL	1509	1509	1515			8421	12	30.2	6	SF		2	Е		13			
GOES	1516	1552	1556	N27			4.0		40		C 2.4	_	_					9.1E-04
	1518 1647	1552 1719	1641			8421		30.1	83	SF		3	E		63			
HOLL	1824	1824	1736 1836			8421 8421		29.8 30.1	49 12	SF SF		3 3	E E		35			
HOLL	1952	2028	2042			8421		29.9	50	SF		3	E		36 38			
L_GOES	2026	2030	2033	N25		0161		L/./	7		c 2.0	2	h					8.0E-04
HOLL	2059	2118	2129			8421	12	30.0	30	SF		3	Е		44			0.01 04
-GOES	2228	2233	2238	N29	E04	8421			10	SF	C 1.6							8.5E-04
L-HOLL	2231	2232	2237			8421		30.2	6	SF		3	Е		20			
HOLL	2255	2257	2304				12	30.4	2			3	Е		42			
	2326 2329	2330 2331	2333 2333			8421 8421	10	30.0	7 4		C 2.0	3	-					7.5E-04
-LEAN	2327	2331	2333	NZO	EUU	04Z I	14	20.0	4	SF		2	Е		23			
GOES 30	0003	0007	0012						9		c 2.1							9.4E-04
GOES	0135	0139	0142	N27	E01	8421			7	SF	C 1.5							5.7E-04
	0138	0138	0145				12	30.1	7	SF		3	Ε		13			
LEAR	0149	0150	0155					29.6	6	SF		3	E		24			
LEAR	0238	0240	0245	N27			12 :	30.0	7	SF		3	E		24			
GOES	0526	0546	0600	1127		8421		70 4	34	~ "	M 1.0				. .			1.2E-02
	0528 0528	0530 0531	0532 0534			8421 8421	12 .	30.1	4	SF		3	E		22			o ==
LEAR	0528	0539	0534				12	30.5	6 58	SF SF	C 2.9	3	E		97			8.5E~04
GOES	0741	0744	0748		200		16.		7	91	C 1.4	5	E		97			FE 5.3E-04
LEAR	0750	0751	0754	N26	W03	8421	12	30.1	4	SF		3	Е		39			J.JC-04
LSVTO	0750	0751		N27				30.2	6	SF		3	Ē		37			F
C SVTO	0824	0829	0838	N27	W02	8421		30.2	14	SF		3	Ē		24			•
-GOES	0826	0829		N27					6		C 1.6							5.4E-04
	0828	0829	0831	N27				30.1	3	SF		3	E		10			
LEAR LEAR	0940 1016	0940 1017		N27				30.1	4	SF		2	E		22			
LEMA	1010	1017	1020	N27	WV4	0421	۱۲ .	30.1	4	SF		2	Е		20			

DECEMBER 1998

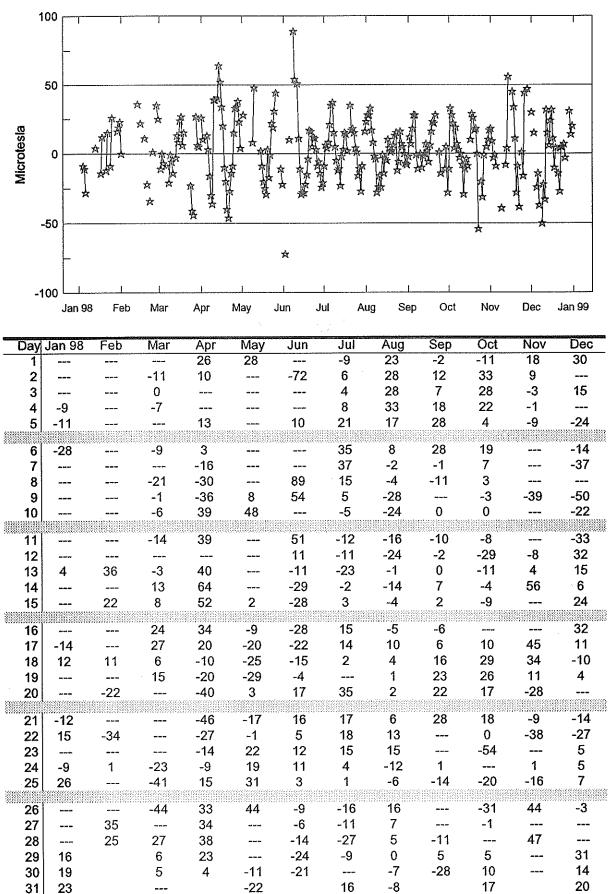
Sta Day	Start (UT)		End (UT)	Lat	CMD	NOAA/ USAF Region		1P Day	Dur (Min)	Imp Opt Xray	See	0bs Type	Area Measurement Time Apparent Corr (UT) (10-6 Disk) (Sq Deg)	Remarks
GOES 30	1214	1224	1232	N27	W05				18	SF C 3.0				2.4E-03
RAMY	1218	1225	1256			8421	12	30.1	38	SF	3	E	29	
GOES	1503	1507	1510			8421			7	SF C 1.3				4.3E-04
-RAMY	1507	1508	1512			8421		29.7	5	SF	3	Е	17	
r-RAMY	1515	1520	1547D				12	29.9	32D	SF	3	E	24	
	1517	1520	1528	N24	W10	8421			11	SF C 1.9				5.3E-04
GOES	1550	1554	1557						7	C 1.3				4.7E-04
GOES	1804	1810	1815		W06				11	SF C 1.7				9.3E-04
-HOLL	1807	1807	1856			8421		30.3	49	SF	3	Ε	23	F
L-RAMY		1808U						29.9	2D	SF	3	E	42	F
HOLL	2058	2100	2102	N26	W12	8421	12	29.9	4	SF	3	Е	10	
GOES	2344	2423	2432						48	C 2.1				4.7E-03
GOES 31		0055	0059			8421			8	1F C 2.8				9.7E-04
LEAR	0054	0055	0104D	N27	W12	8421	12	30.1	10D	1F	3	Е	125	
GOES	0126	0136	0140	N27	W12	8421			14	SF C 1.6				1.1E-03
LEAR	0132	0138	0148	N27	W12	8421	12	30.1	16	SF	3	Е	25	
GOES	0303	0315	0320						17	C 1.8				1.6E-03
GOES	0349	0353	0358						9	C 1.3				6.3E-04
-GOES	0401	0412	0415		W11				14	SF C 3.4				2.4E-03
LEAR		0414U		N28	W11	8421	12	30.3	4D	SF	3	E	72	
GOES	0445	0449	0502						17	C 1.6				1.5E-03
GOES	0516	0519	0521						5	C 1.6				4.4E-04
GOES	0626	0632	0642						16	C 4.9				3.3E-03
r-GOES	0717	0720	0725			8421			8	SF C 4.1				1.5E-03
∟svto	0719	0719	0725			8421		29.8	6	SF	2	E	17	F
-SVTO	0834	0839				8421	12	29.7	15D	SF	3	E	73	F
L-GOES	0836	0839	0843	N27	W21	8421			7	SF C 2.3				8.8E-04
GOES	0906	0911	0922						16	C 2.2				2.0E-03
LEAR	0936	0939	0944			8421		30.1	8	SF	2	E	13	F
-SVTO	0949	0949	1006			8421		29.7	17	SF	3	Е	21	
LEAR	0949	0950	1003			8421		29.8	14	SF	2	E	19	
LEAR	1015	1015	1019	N27	W17	8421	12	30.1	4	SF	2	Е	17	
GOES	1036	1041	1051					•• •	15	C 1.9	-			1.4E-03
SVTO	1153	1157	1201	N27	₩24	8421	12	29,6	8	SF	3	E	12	• •= •=
GOES	1254	1308	1318						24	C 2.0				2.6E-03
GOES	1454	1459	1505						11	C 1.4	-			8.1E-04
RAMY	1633	1633	1650			8421		30.0	17	SF	3	E	13	
RAMY	1756	1757	1802	N27	₩52	8421	12	29.2	6	SF	3	E	19	

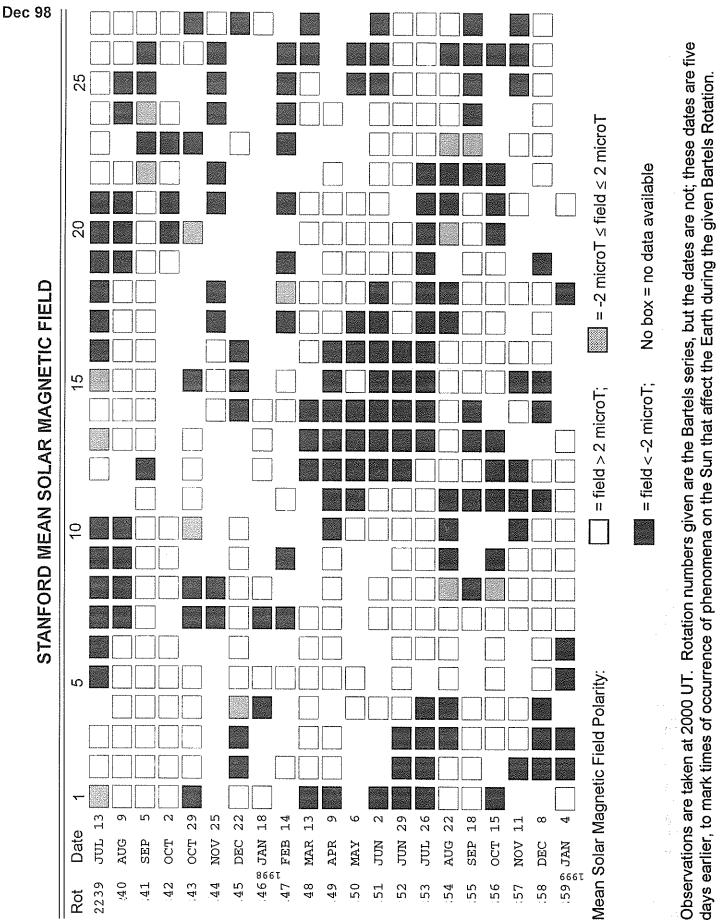
"Remarks"

- A = Eruptive prominence whose base is less than 90 degrees from central meridian.
- B = Probably the end of a more important flare.
- C = Invisible 10 minutes before.
- D = Brilliant point.
- E = Two or more brilliant points.
- F = Several eruptive centers.
- G = No visible spots in the neighborhood.
- H = Flare accompanied by high-speed dark filament.
- I = Active region very extended.
- J = Distinct variations of plage intensity before or after the flare.
- K = Several intensity maxima.
- L = Existing filaments show signs of sudden
- activity.
- M = White-light flare.
- N = Continuous spectrum shows effects of polarization.

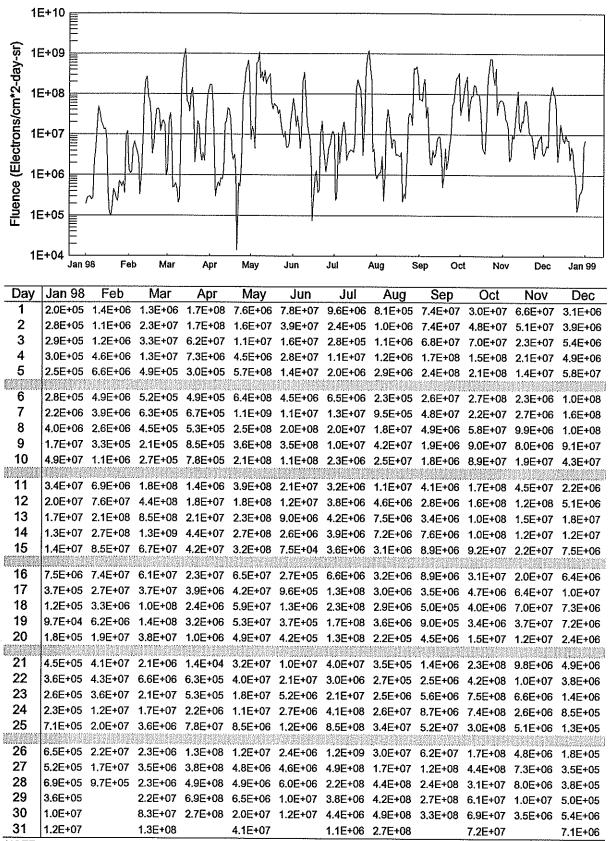
- O = Observations have been made in the H and K lines of Ca II.
- P = Flare shows Helium D3 in emission.
- Q = Flare shows Balmer continuum in emission.
- R = Marked asymmetry in H-alpha line suggests ejection of high-velocity material.
- S = Brightness follows disappearance of filament in same position.
- T = Region active all day.
- U = Two bright branches, parallel or converging.
- V = Occurrence of an explosive phase; important, expansion within roughly 1 minute that often includes a significant intensity increase.
- W = Great increase in area after time of maximum intensity.
- X = Unusually wide H-alpha line. Y = System of loop-type prominences.
- Z = Major sunspot umbra covered by flare.

Observation Type: C=Cinematographic, E=Electronic, P=Photographic, V=Visual


NOTE: Beginning July 1997, the times of all GOES X-ray events are now included in this table.


SOLAR RADIO EMISSION Selected Fixed Frequency Events

for provide the second second				DECE	MDER 13	020		
Day	Freq Sta	Туре	Start (UT)	Time of Maximum (UT)	Duration (Min)	Flux Density Peak Mean (10 -22 W/m 2 Hz)	Int Remarks	
-								
01	2695 PALE	4 S/ 4 S/		1807.0 1807.0	3.0 4.0	190.0 200.0	QL=4 ST=2 TY QL=4 ST=2 TY	
13		8 S	0515.0	0515.0	1.0	99.0	QL=4 ST=3 TY	(P=3
	L8800 LEAR	8 S	0515.0	0515.0	U	52.0	QL=4 ST=3 TY	
14	-8800 PALE	8 S	2224.0	2224.0	1.0	92.0	QL=4 ST=2 TY	(P=3
	L_2695 PALE	8 S	2224.0	2224.0	1.0	83.0	QL=4 ST=2 TY	(P=3
16	8800 SGMR	8 S	1908.0	1909.0	2.0	35.0	QL=4 ST=2 TY	(P=3
17	-2695 LEAR	4 S/	'F 0742.0	0743.0	4.0	230.0	QL=4 ST=2 TY	(P=3
	-8800 LEAR	4 S/	F 0742.0	0743.0	6.0	120.0	QL=4 ST=2 TY	(P=3
	-8800 SVTO	4 S/	'F 0742.0	0743.0	7.0	150.0	QL=4 ST=2 TY	(P=3
	└-2695 svto	4 S/		0743.0	4.0	200.0	QL=4 ST=2 TY	
	2695 SGMR	8 S	1415.0	1415.0	2.0	96.0	QL=4 ST=2 TY	
	-8800 SGMR	8 S	1415.0	1416.0	2.0	88.0	QL=4 ST=2 TY	
	-8800 SVTO	8 S	1415.0	1416.0	2.0	92.0	QL=4 ST=2 TY	
	└-2695 SVTO	8 S	1415.0	1415.0	1.0	85.0	QL=4 ST=2 TY	
	8800 SGMR	8 S	1750.0	1750.0	2.0	25.0	QL=4 ST=2 TY	
	└-2695 SGMR	8 S	1750.0	1750.0	2.0	31.0	QL=4 ST=2 TY	18=2
18	8800 LEAR	4 S/		0305.0	3.0	29.0	QL=4 ST=2 TY	(P=3
	2695 SGMR	49 GB		1718.0	68.0	880.0	QL=4 ST=2 TY	
	∟8800 SGMR	49 GB	1717.0	1718.0	71.0	1300.0	QL=4 ST=2 TY	'P=6
20	8800 LEAR	8 S	0852.0	0853.0	2.0	12.0	QL=4 ST=2 TY	
	2695 LEAR	4 S/		0857.0	5.0	17.0	QL=4 ST=2 TY	
	-2695 SVTO	46 C	0853.0	0857.0	4.0	28.0	QL=4 ST=2 TY	
	-8800 LEAR -2695 LEAR	4 S/ 8 S	F 0855.0 0856.0	0857.0 0857.0	4.0 1.0	13.0 25.0	QL=4 ST=2 TY QL=4 ST=2 TY	
23					1.0	68.0	QL=4 ST=2 TY	
	8800 LEAR		0326.0	0326.0				
24	2695 PALE	8 S	0122.0	0122.0	U	25.0	QL=4 ST=2 TY	
	-2695 SVTO	8 S	1140.0	1140.0	1.0	32.0	QL=4 ST=2 TY	
		8 S 8 S	1140.0 1150.0	1140.0 1150.0	1.0 1.0	79.0 47.0	QL=4 ST=2 TY QL=4 ST=2 TY	
26	2695 LEAR	8 S	0047.0	0047.0	U	36.0	QL=4 ST=2 TY	/D-3
20	8800 LEAR	8 S	2342.0	2343.0	1.0	23.0	QL=4 ST=2 TY	
28	-2695 LEAR	4 S/	F 0515.0	0524.0	10.0	330.0	QL=4 ST=2 TY	(P=3
	└8800 LEAR	4 S/	F 0516.0	0524.0	9.0	360.0	QL=4 ST=2 TY	(P=3
	-8800 LEAR	4 S/	F 0545.0	0547.0	8.0	180.0	QL=4 ST=2 TY	(P=3
	└-2695 LEAR	4 S/		0547.0	7.0	110.0	QL=4 ST=2 TY	
	2695 SGMR	8 S	1717.0	1717.0	U	32.0	QL=4 ST=2 TY	
	2695 SGMR	4 S/		1806.0	6.0	23.0	QL=4 ST=2 TY	
	-8800 LEAR	4 S/		2322.0	41.0	100.0	QL=4 ST=2 TY	
	└-2695 LEAR	8 S	2322.0	2322.0	1.0	26.0	QL=4 ST=2 TY	(P=5
29	-2695 LEAR	8 S	1011.0	1011.0	U	39.0	QL=4 ST=2 TY	
	L_2695 SVTO	8 S	1011.0	1011.0	U	39.0	QL=4 ST=2 TY	(P=5
30	8800 LEAR	8 S	0004.0	0004.0	1.0	65.0	QL=4 ST=2 TY	
	8800 SGMR	8 S	1806.0	1807.0	2.0	24.0	QL=4 ST=2 TY	(P=3
31	8800 LEAR	4 S/		0629.0	9.0	330.0	QL=4 ST=2 TY	
	-8800 LEAR	8 S	0718.0	0718.0	1.0	140.0	QL=4 ST=2 TY	
	-8800 SVTO	8 S	0718.0	0718.0	2.0	160.0	QL=4 ST=2 TY	
	8800 LEAR	8 S 8 S	1038.0	1039.0	1.0	58.0 75.0	QL=4 ST=2 TY	
		8 S	1038.0 1455.0	1038.0 1456.0	1.0 2.0	75.0 93.0	QL=4 ST=2 TY QL=4 ST=2 TY	
	-8800 SVTO	8 S	1455.0	1456.0	1.0	60.0	QL=2 ST=2 TY	
	-2695 SGMR	8 S	1456.0	1456.0	1.0	32.0	QL=4 ST=2 TY	
	_2695 SVTO	8 S	1456.0	1456.0	Ű	29.0	QL=2 ST=2 TY	
<u></u>					_			


DECEMBER 1998

Stanford Mean Solar Magnetic Field (Microtesla) "Sun-As-A-Star"

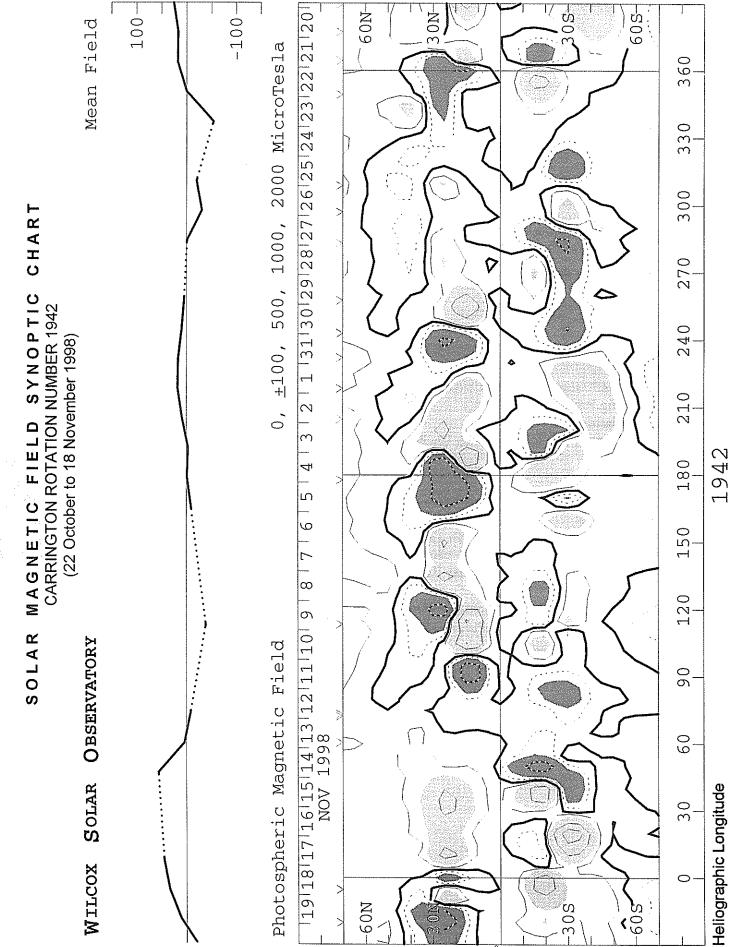
GOES Daily Electron Fluence Jan 98 - Dec 98

NOTE: The electron detector responds significantly to protons above 32 MeV; therefore, electron data are contaminated when a proton event is in progress. These days are indicated with '-999' in the table and are not plotted. '--' indicates data not available. NOTE: GOES9 data began April, 1996 and ended on 26 July, 1998. GOES8 is primary satellite as of 27 July, 1998.

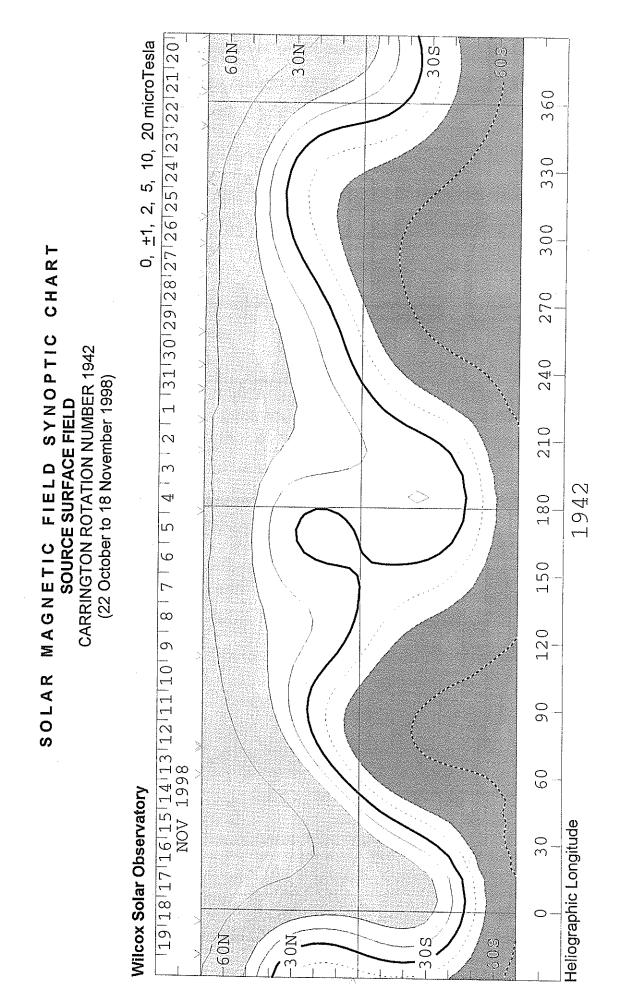
CONTENTS

Part I

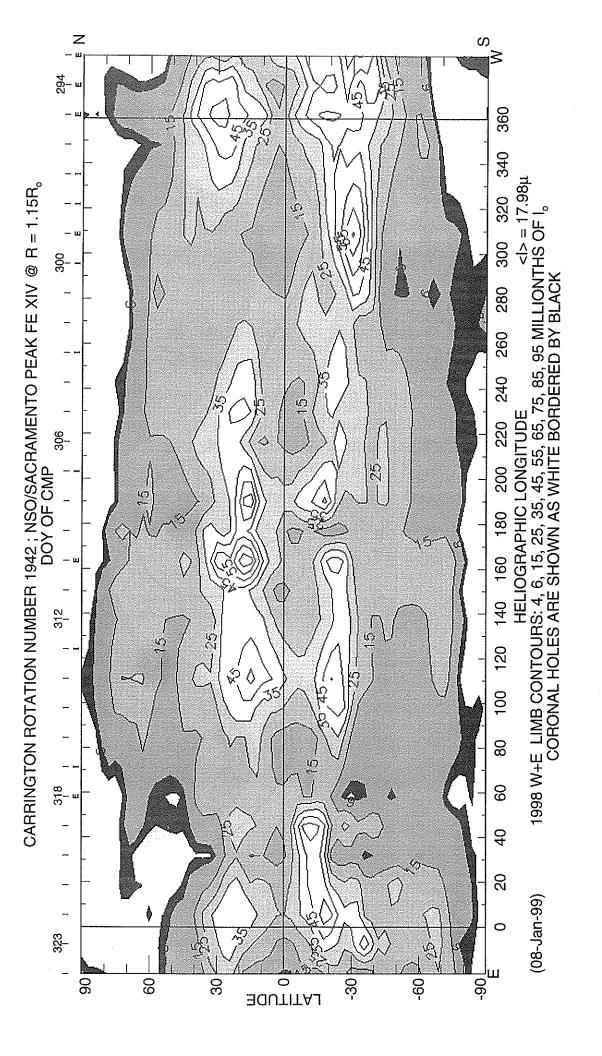
Prompt Reports

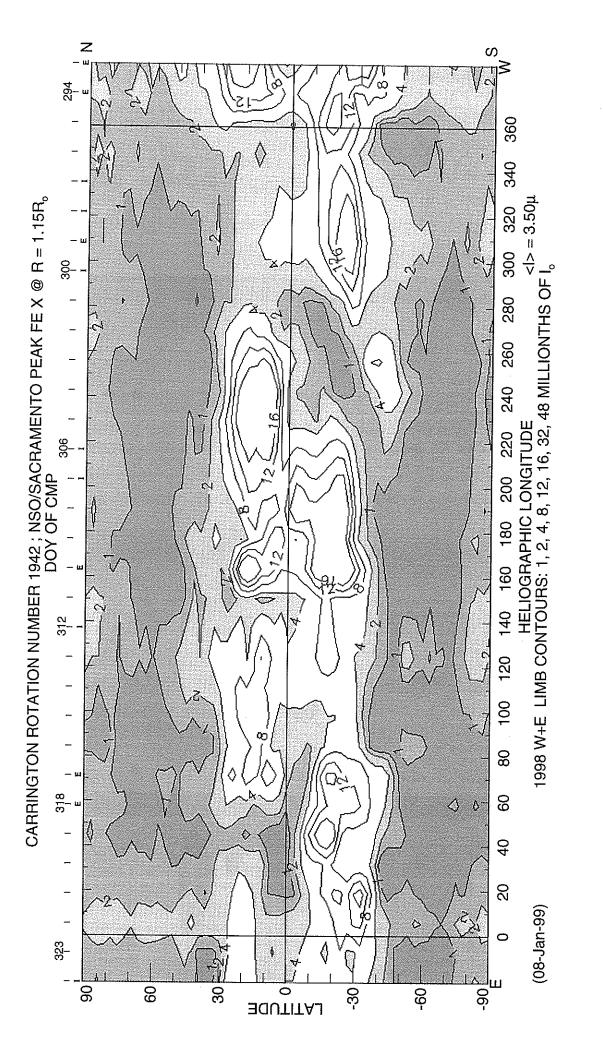

DATA FOR NOVEMBER 1998

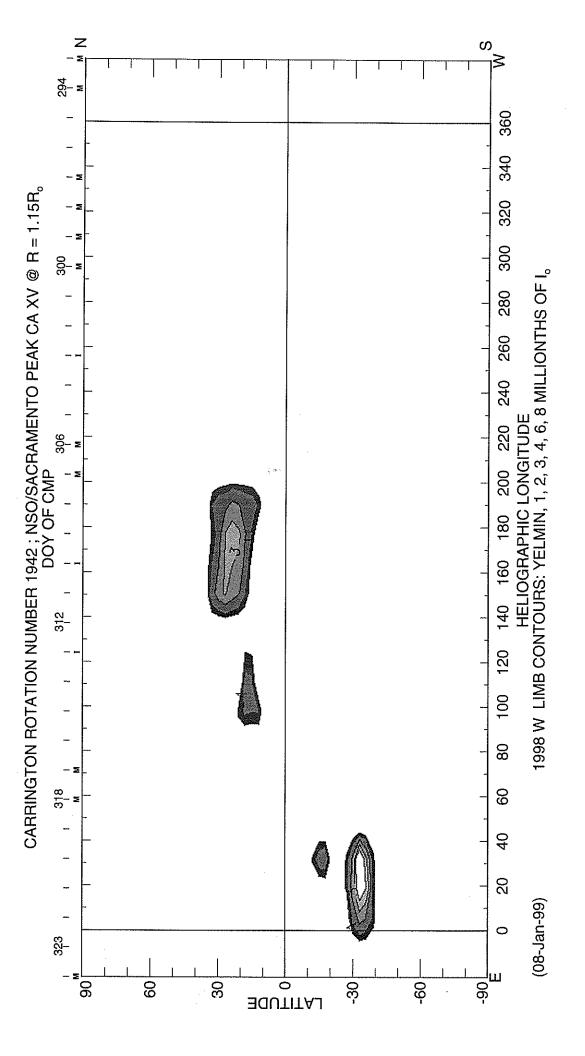
Page


Number 653

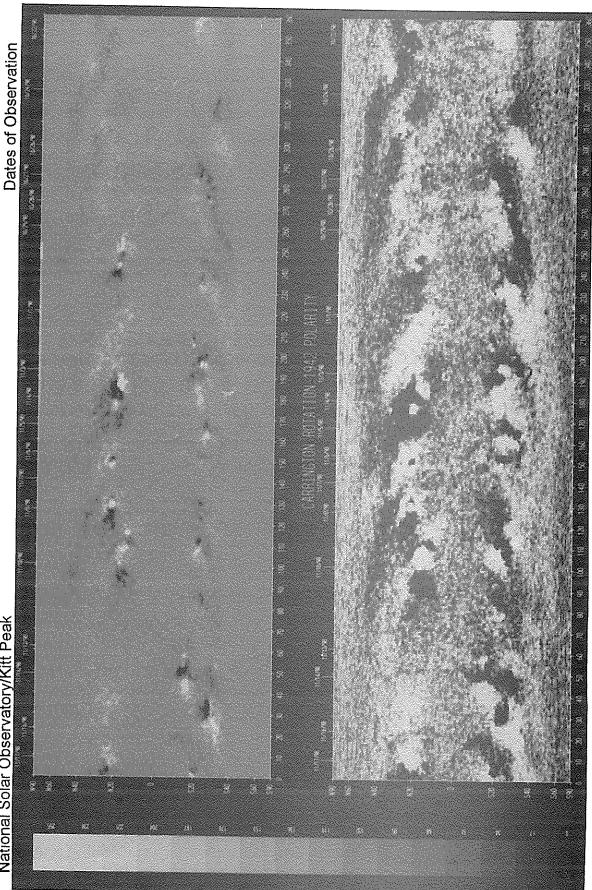
SOLAR ACTIVE REGIONS	1 age
Solar Synoptic Charts	46- 51
Daily Activity Solar Maps	
YOHKOH Daily Soft X-ray Images	82-96
Nobeyama Daily Radioheliograph Images at 17 GHz	97-101
Preliminary NSO/KP Coronal Hole Daily Maps	102-105
Sunspot Groups	106-120
SUDDEN IONOSPHERIC DISTURBANCES	121-123
SOLAR RADIO SPECTRAL OBSERVATIONS	124-140
SOLAR RADIOHELIOGRAPH - 164 AND 327 MHz - NANCAY	141-142
COSMIC RAY MEASUREMENTS BY NEUTRON MONITOR	
Daily Counting Rates	143
Chart of Variations	
Graph and Table of Monthly Mean Mt Washington Data Jan 1954-Nov 1998	150
GEOMAGNETIC INDICES	
Geomagnetic Activity Indices	151
Daily Average Ap	152
Chart of Kp by 27-day Rotation	153
Table of Monthly as Index (1950 to present)	154
Chart of 3-hourly Km and aa by 27-day Rotation	155
Provisional Values of Hourly Equatorial Dst	156
Polar Cap (PC) Geomagnetic Index Plot of 15-min values – Thule	157
Plot of 1-min values Vostok unavailable at time of publication	
Principal Magnetic Storms	158
Sudden Commencements/Solar Flare Effects	159

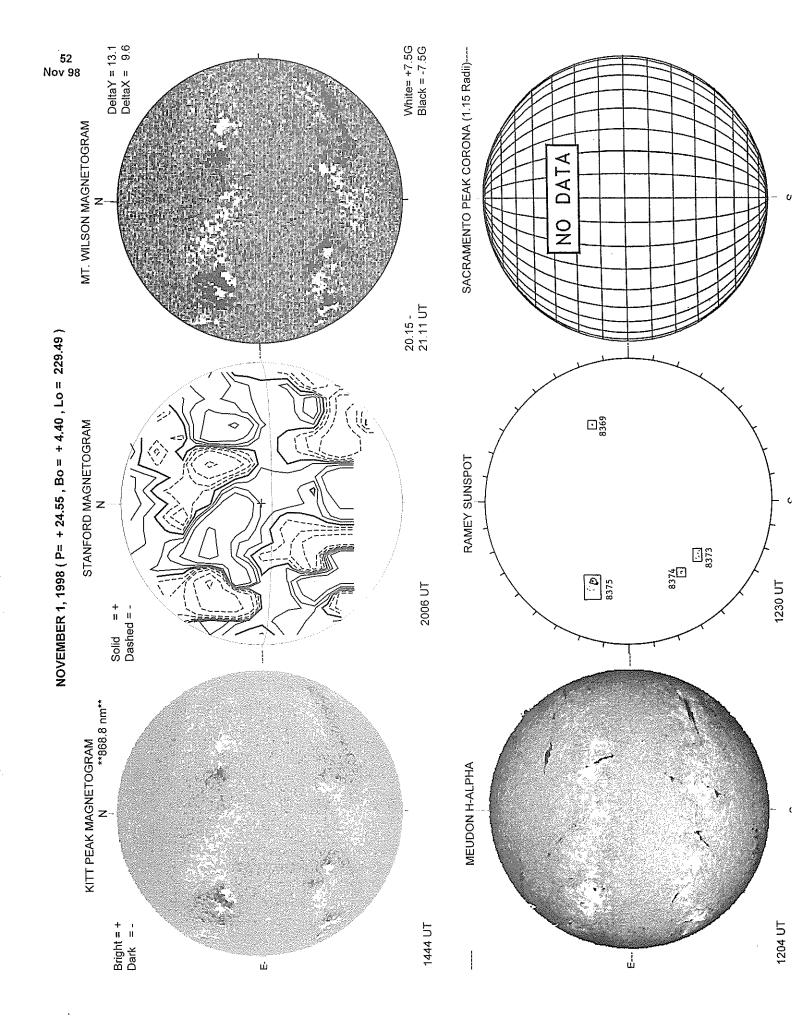


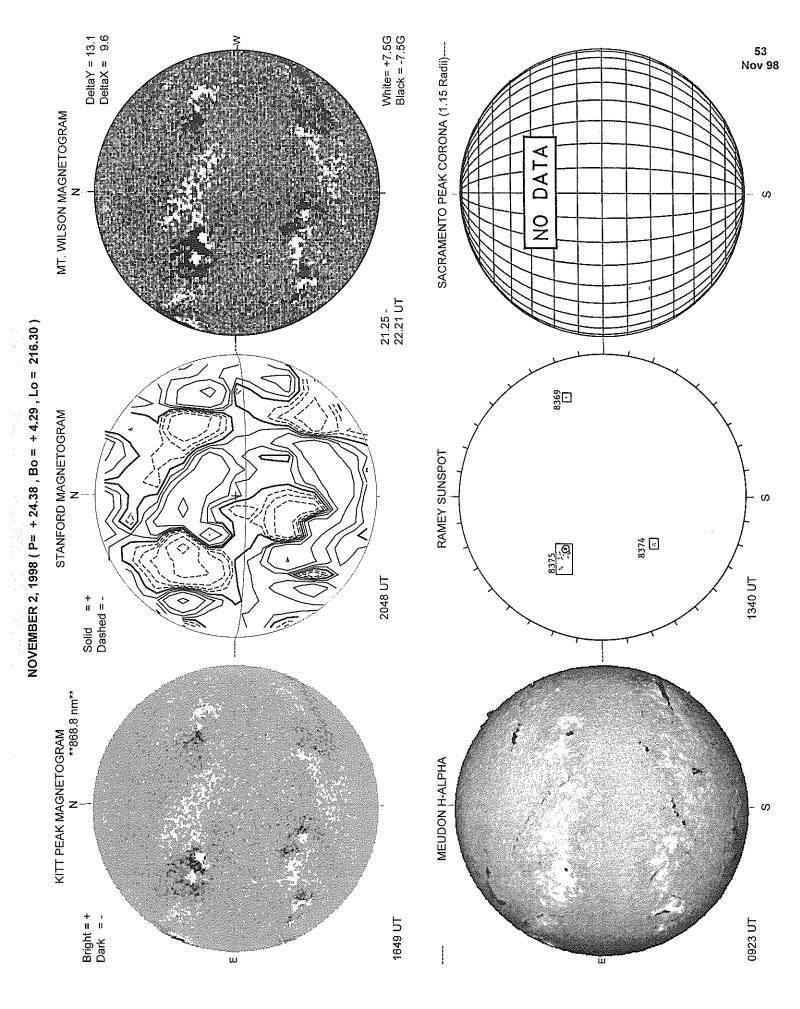

Nov 98

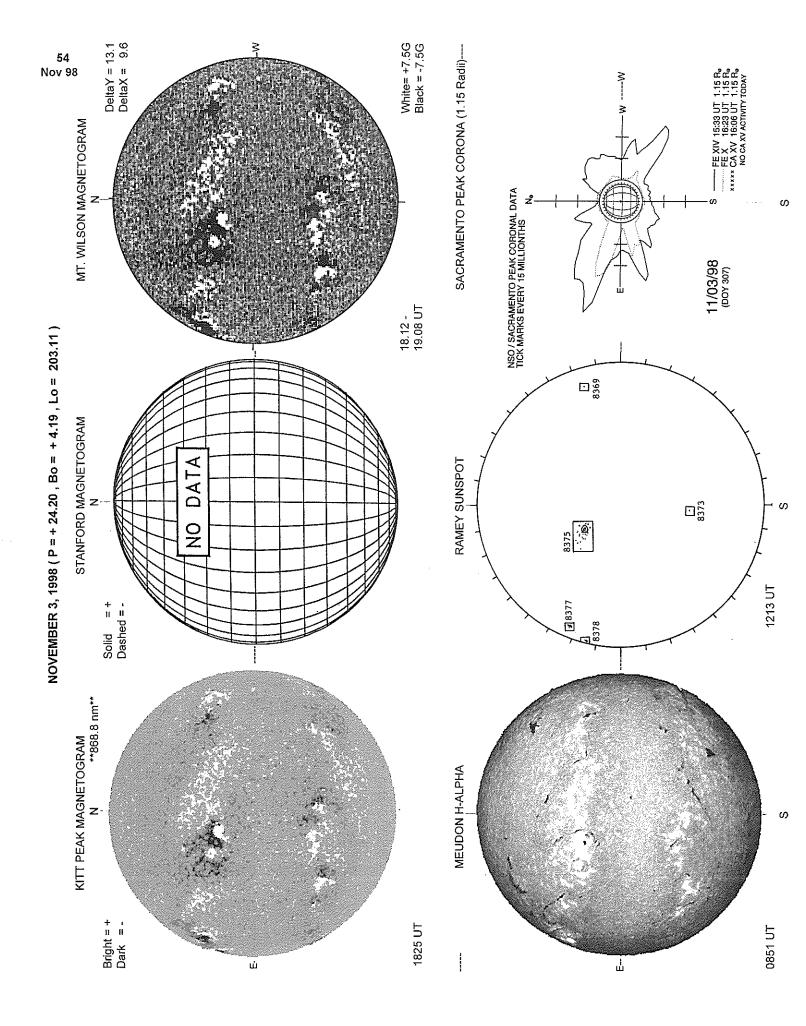

47 Nov 98

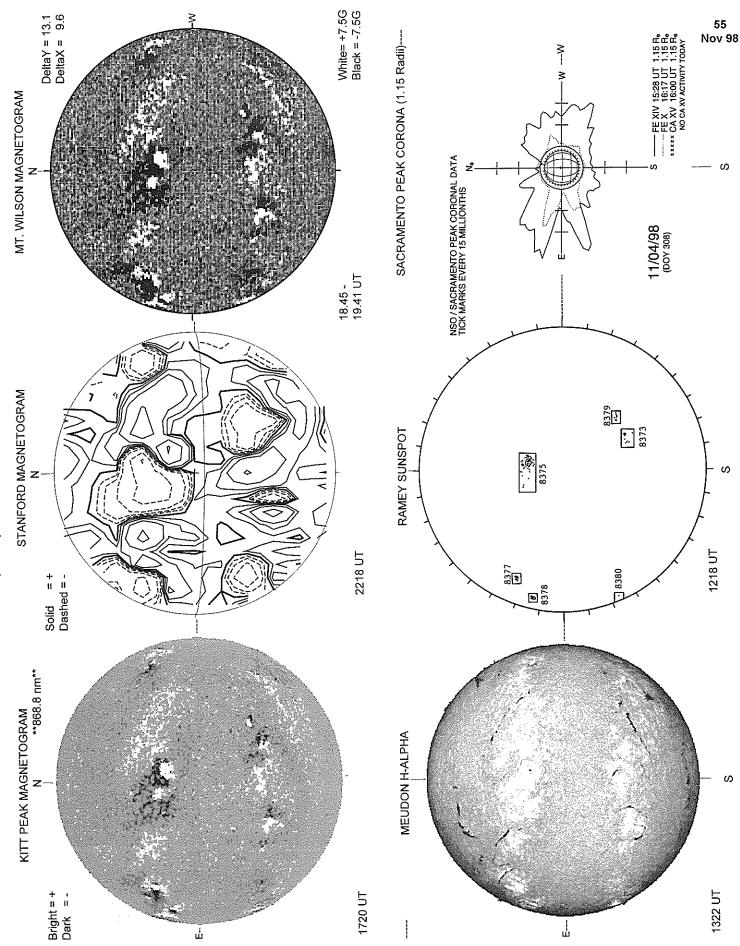
48 Nov 98


49 Nov 98

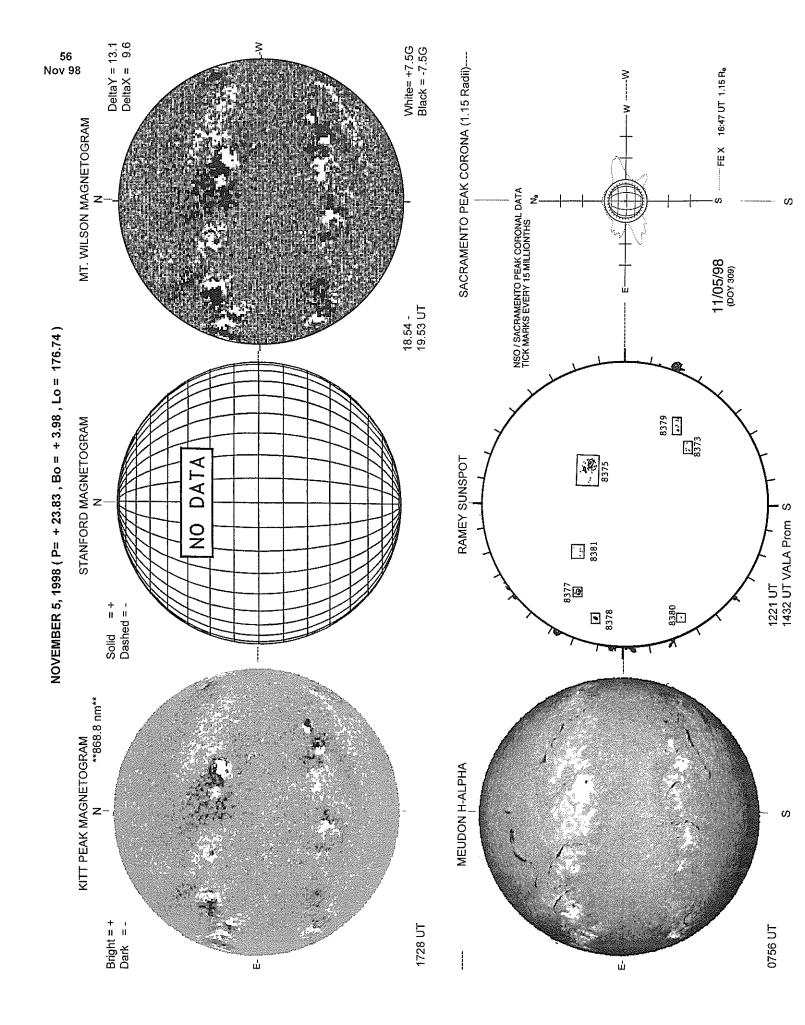

50 Nov 98

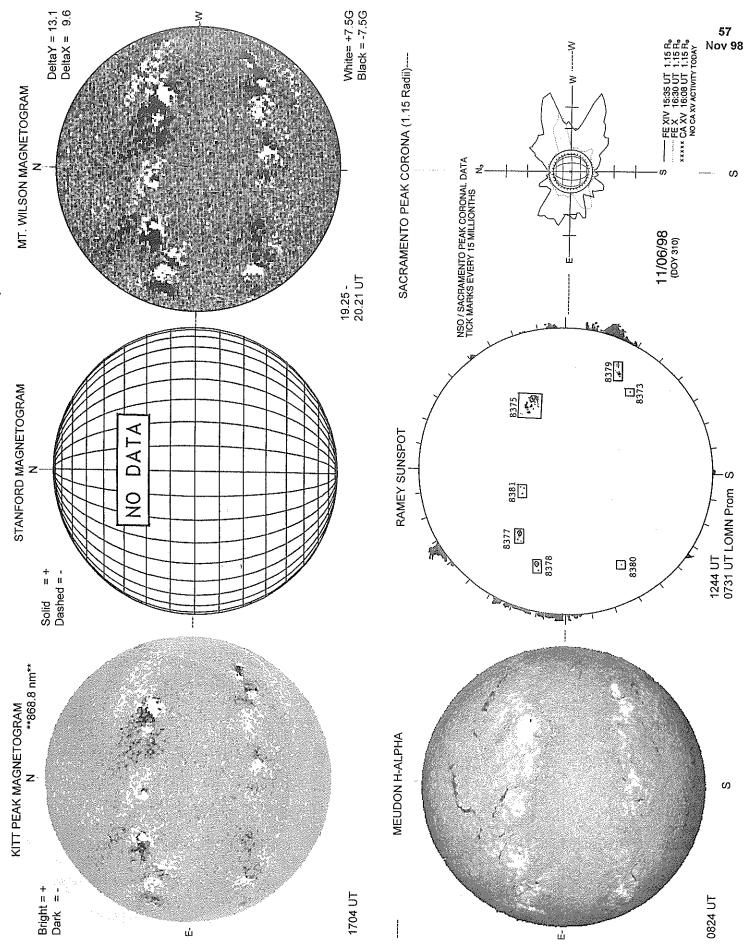

CHART **AGNETIC FIELD SYNOPTIC** CARRINGTON ROTATION NUMBER 1942 (22 October to 18 November 1998) MAGNETIC SOLAR

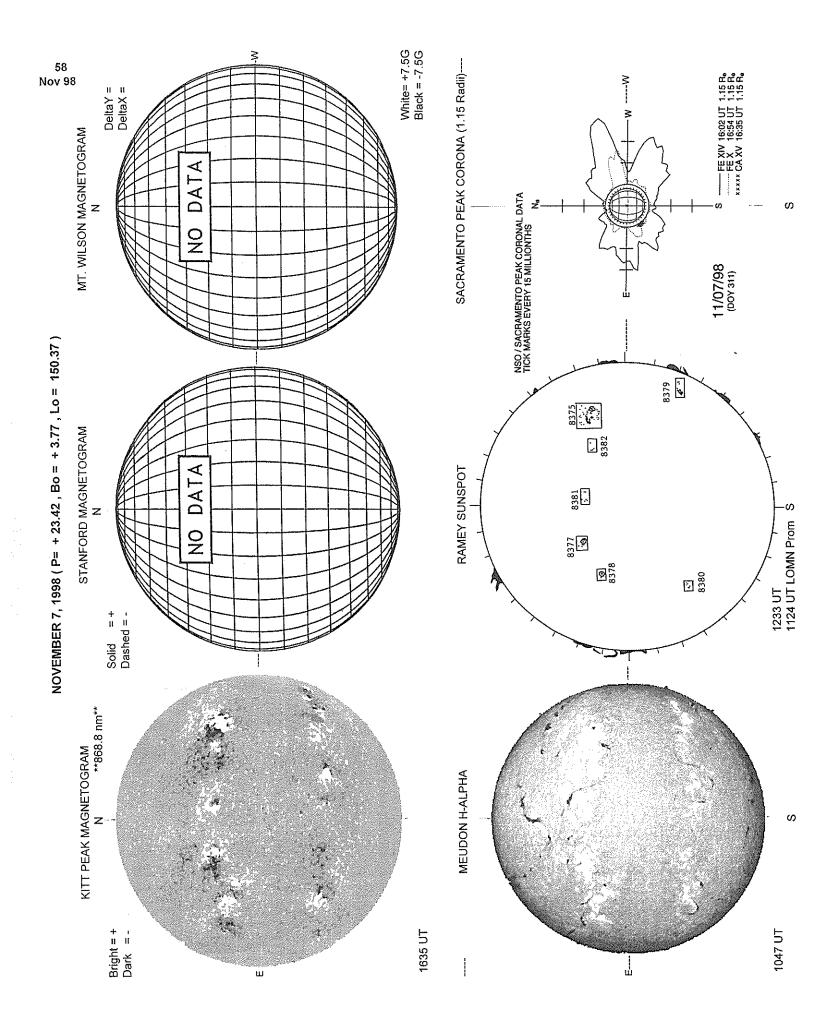

National Solar Observatory/Kitt Peak



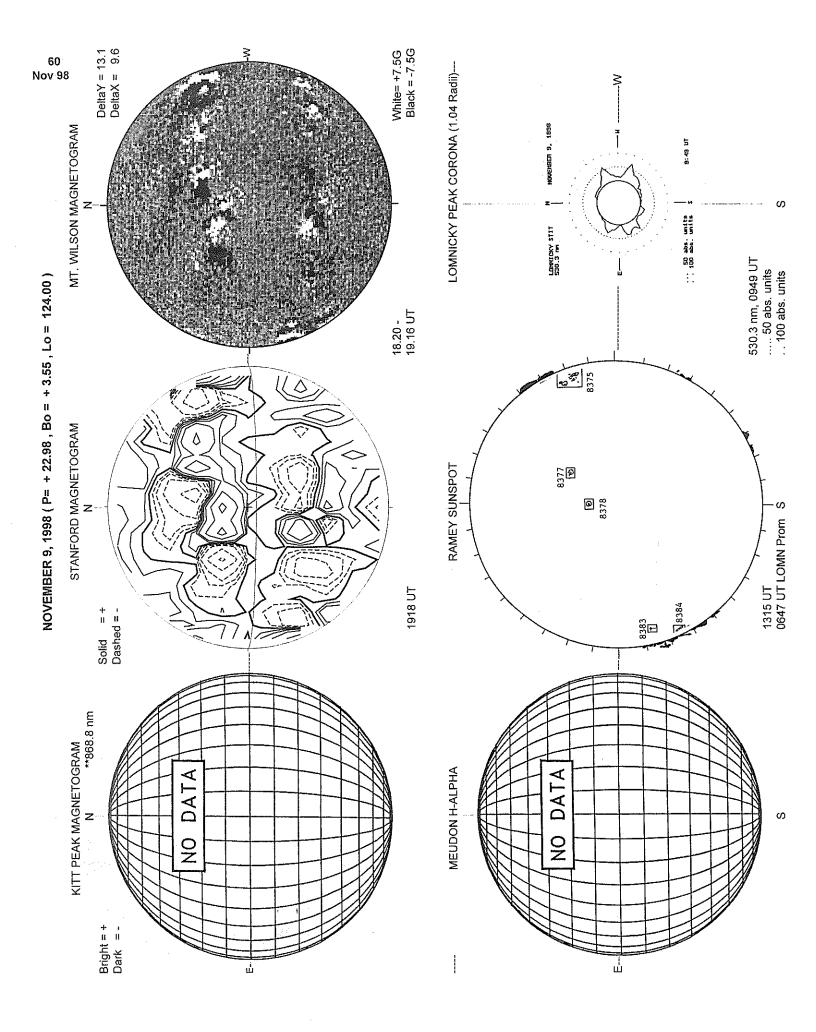
Heliographic Longitude

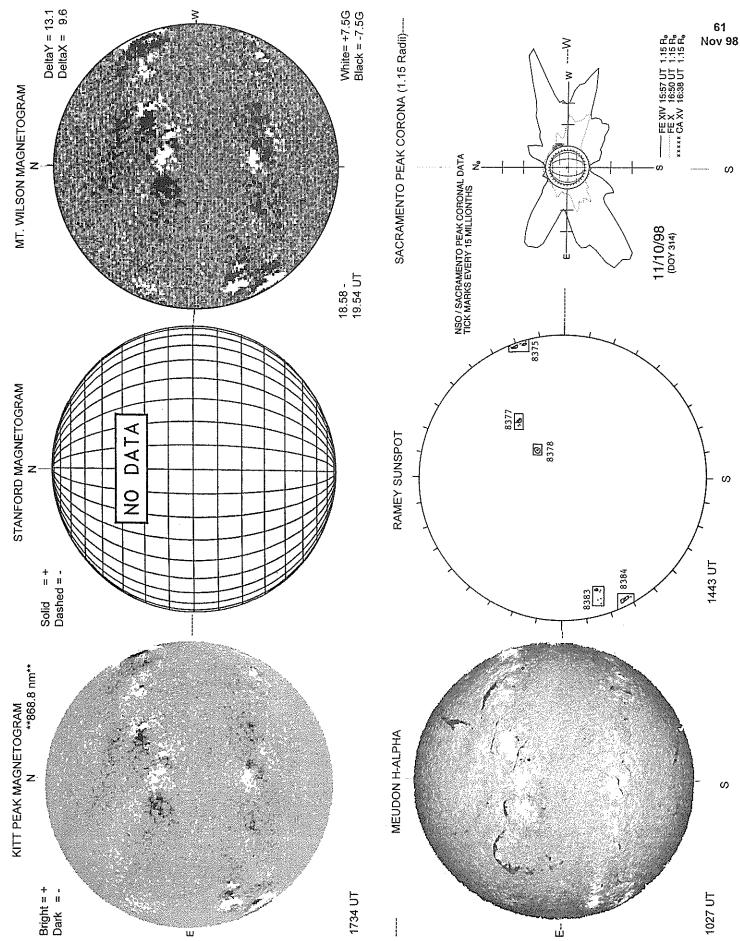


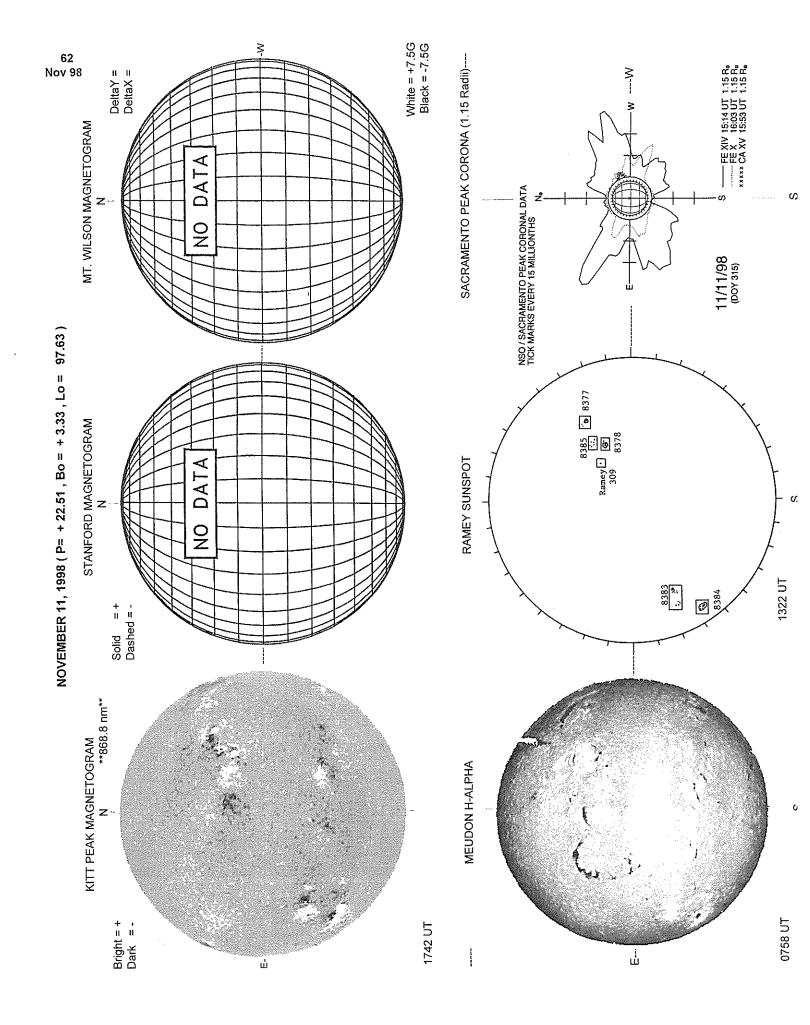


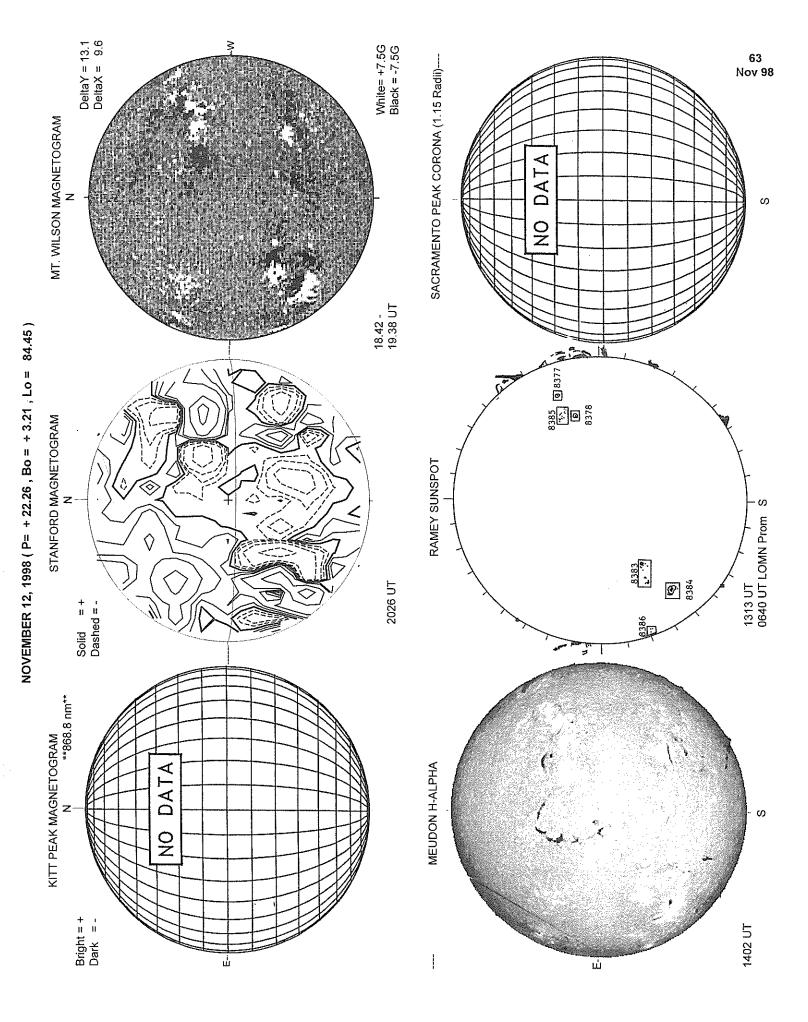


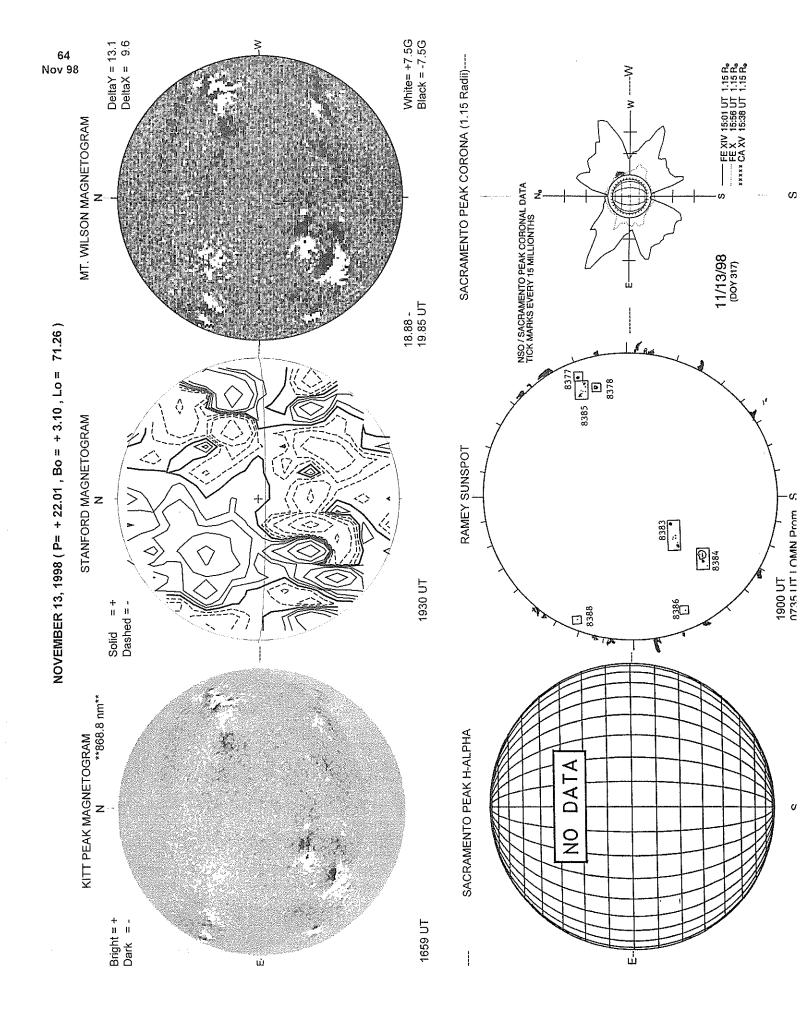
NOVEMBER 4, 1998 (P = + 24.02, Bo = + 4.09, Lo = 189.93)

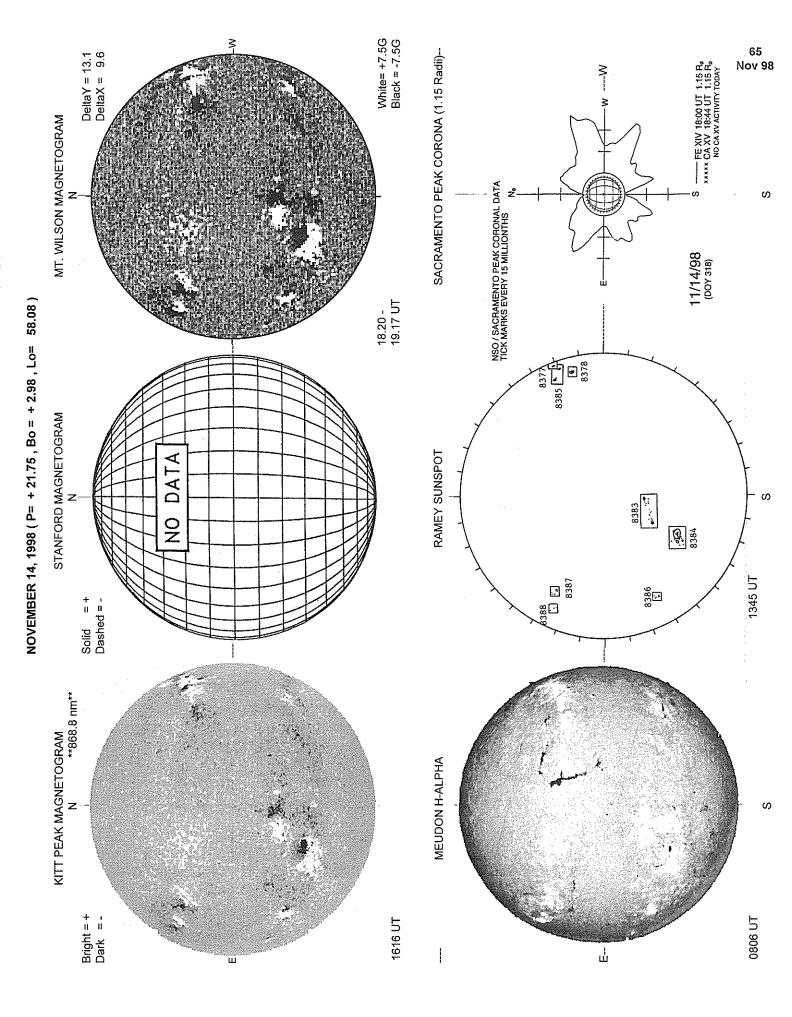


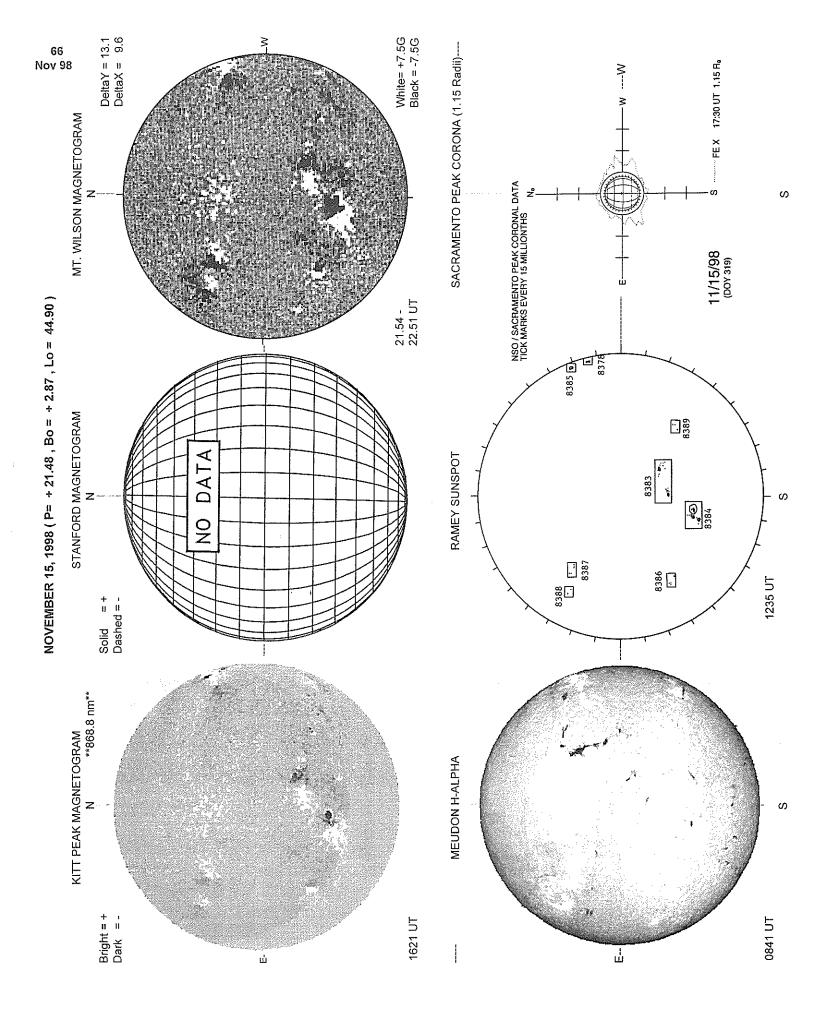

NOVEMBER 6, 1998 (P= + 23.63 , Bo = + 3.88 , Lo = 163.56)

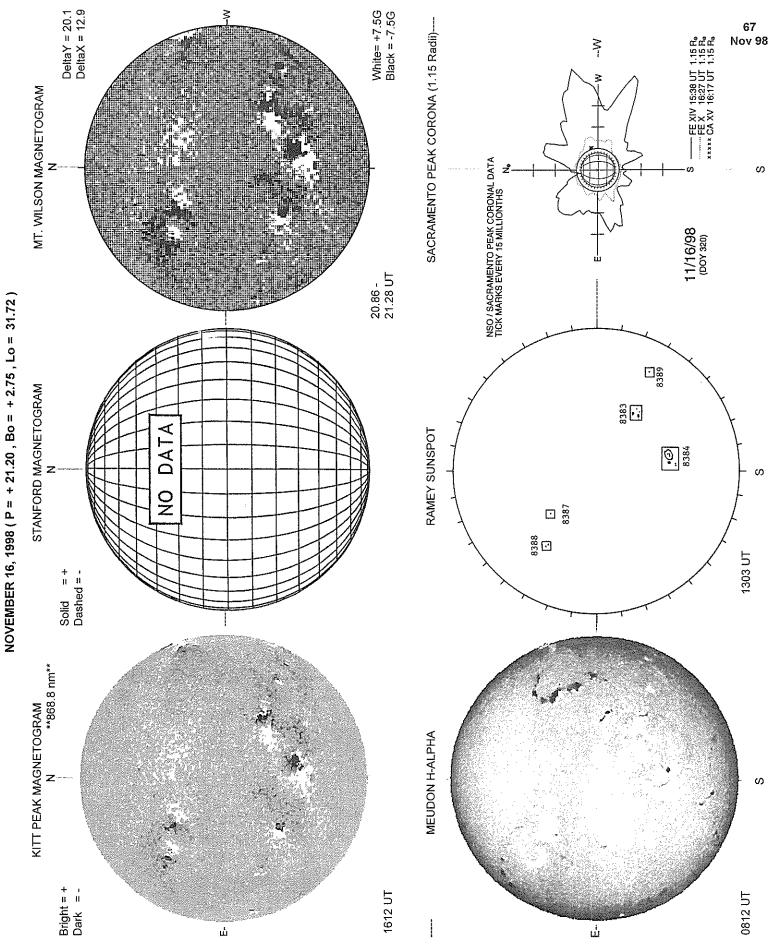


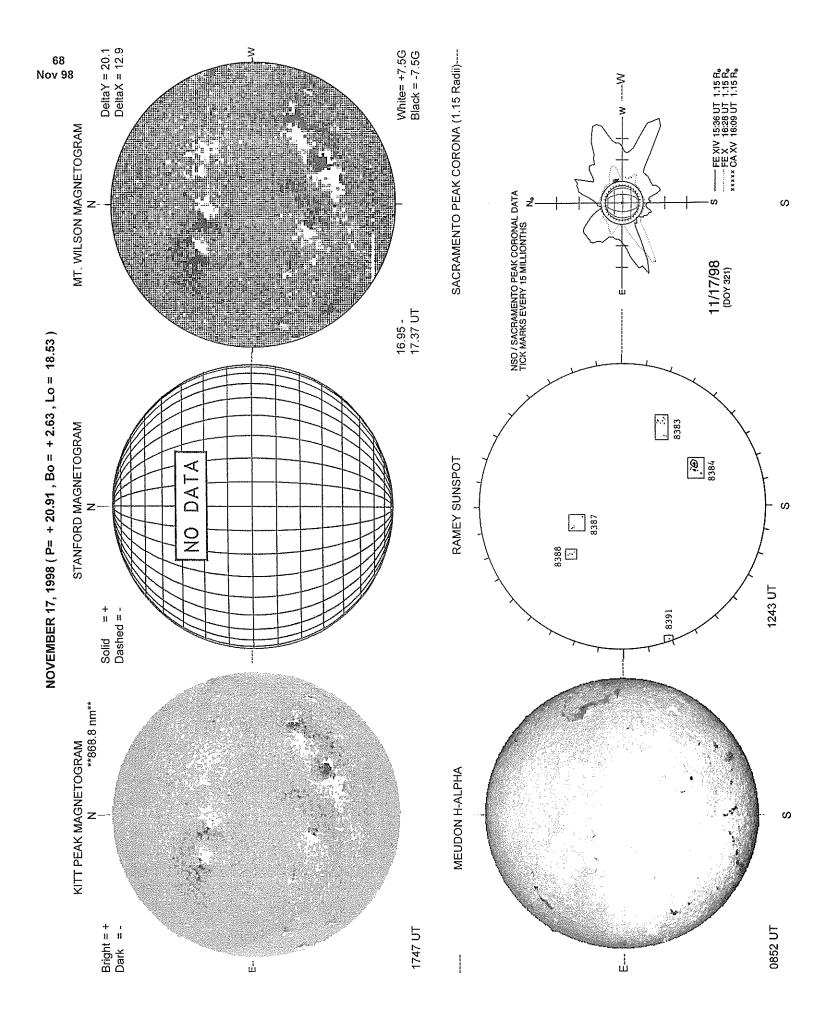

NOVEMBER 8, 1998 (P= + 23.20, Bo = + 3.66, Lo = 137.19)

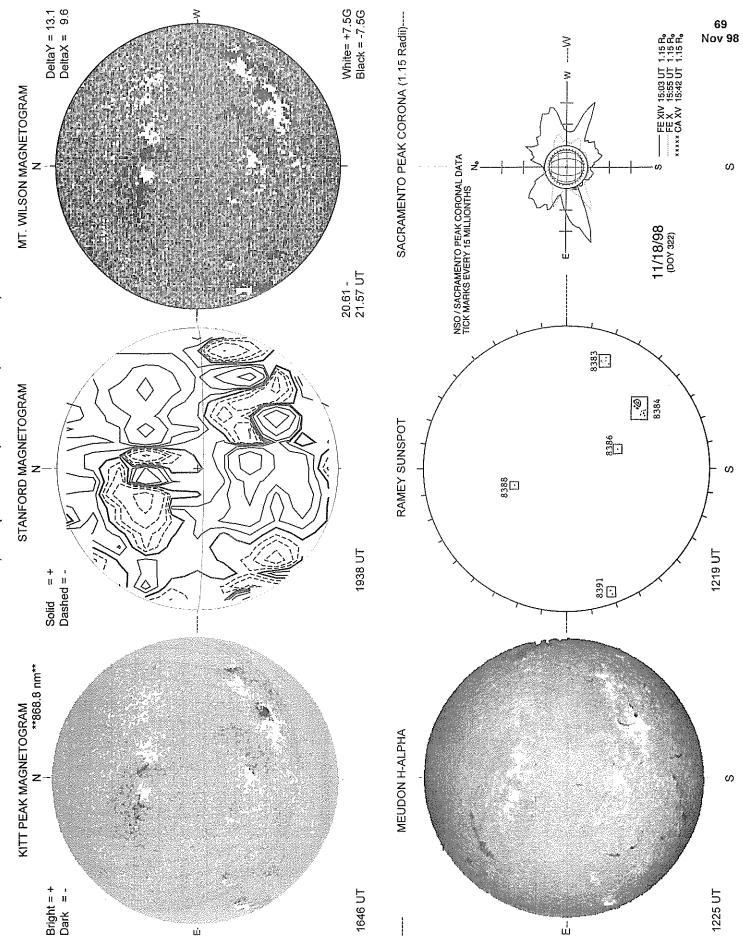


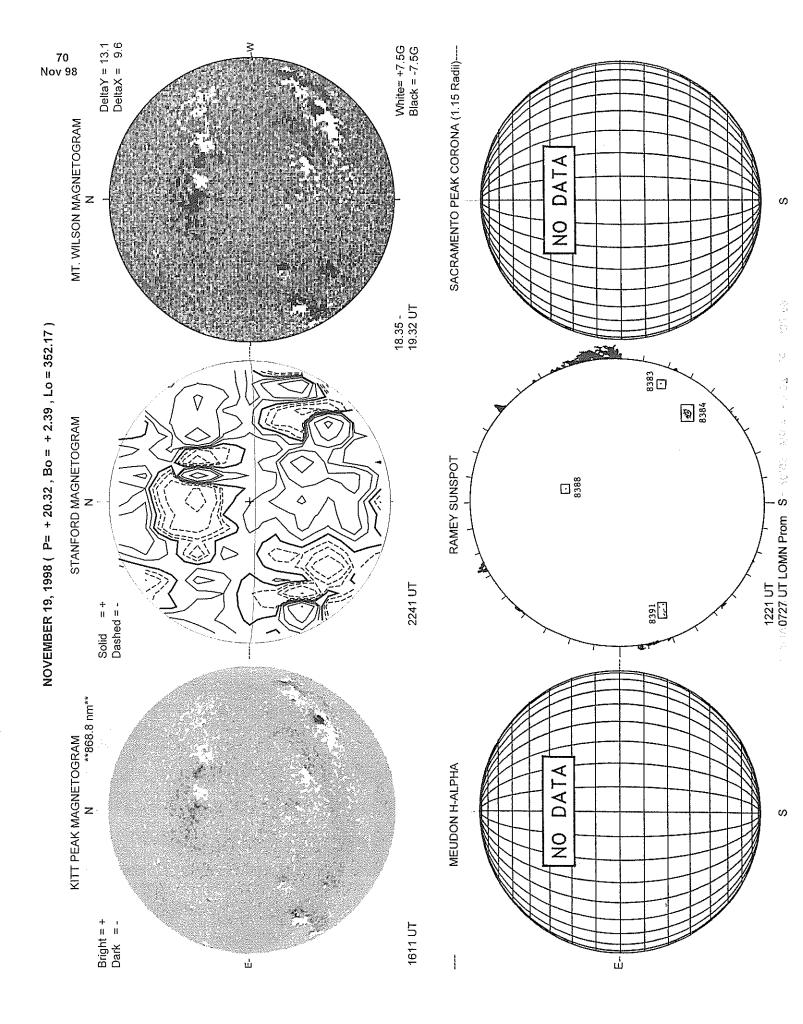


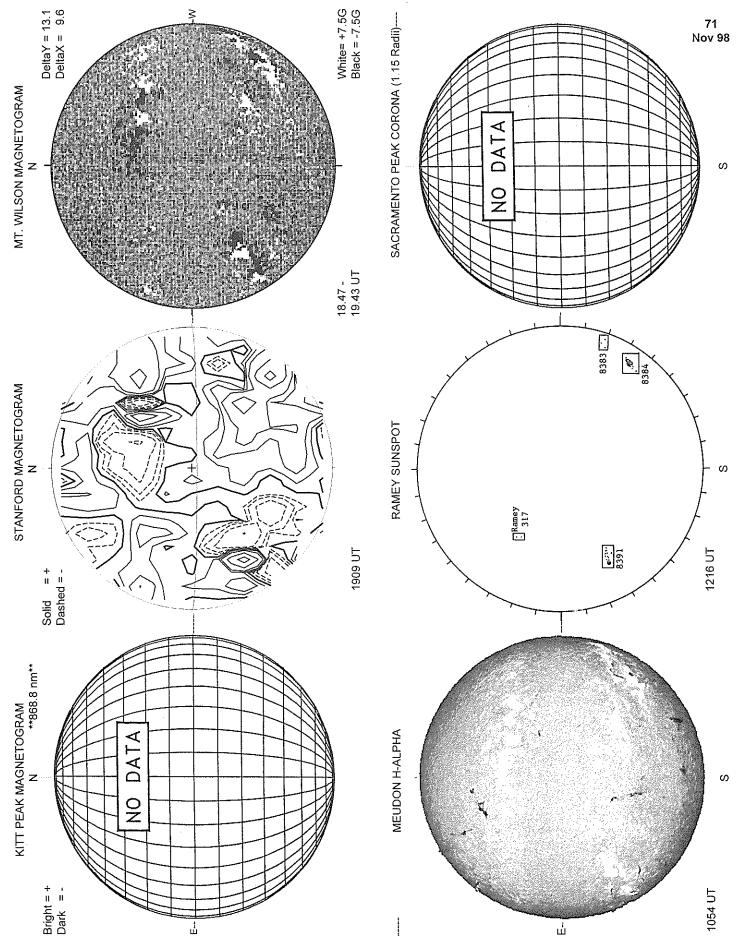

NOVEMBER 10, 1998 (P= + 22.75, Bo = + 3.44, Lo = 110.82)

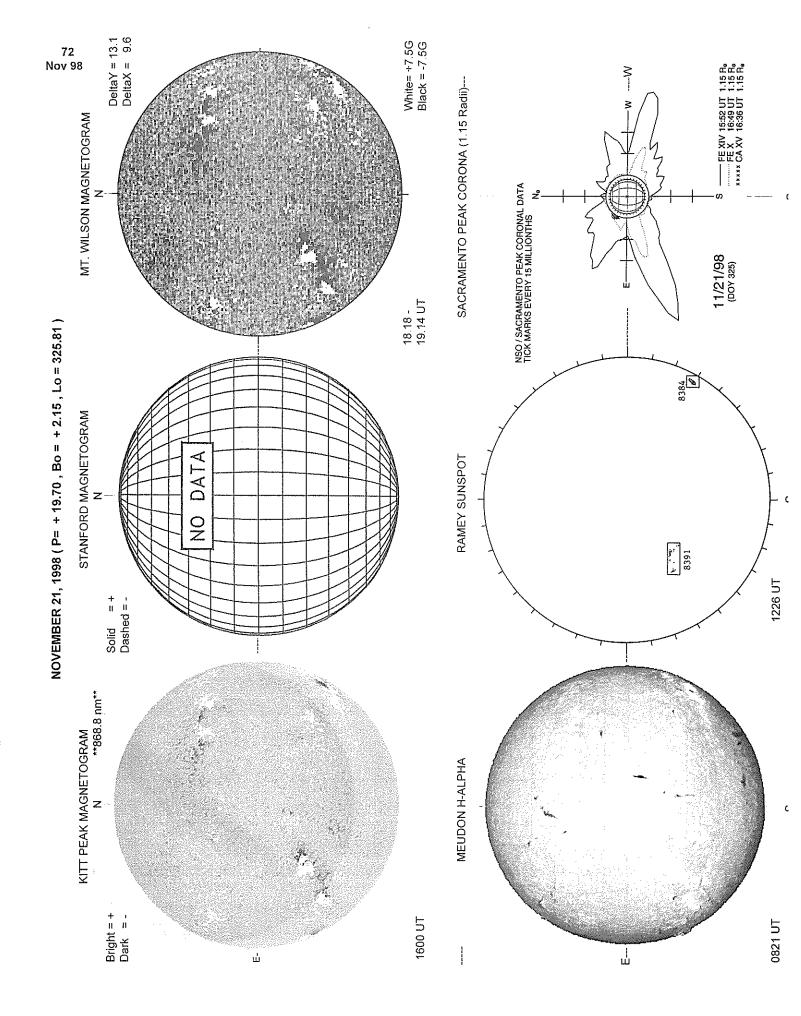


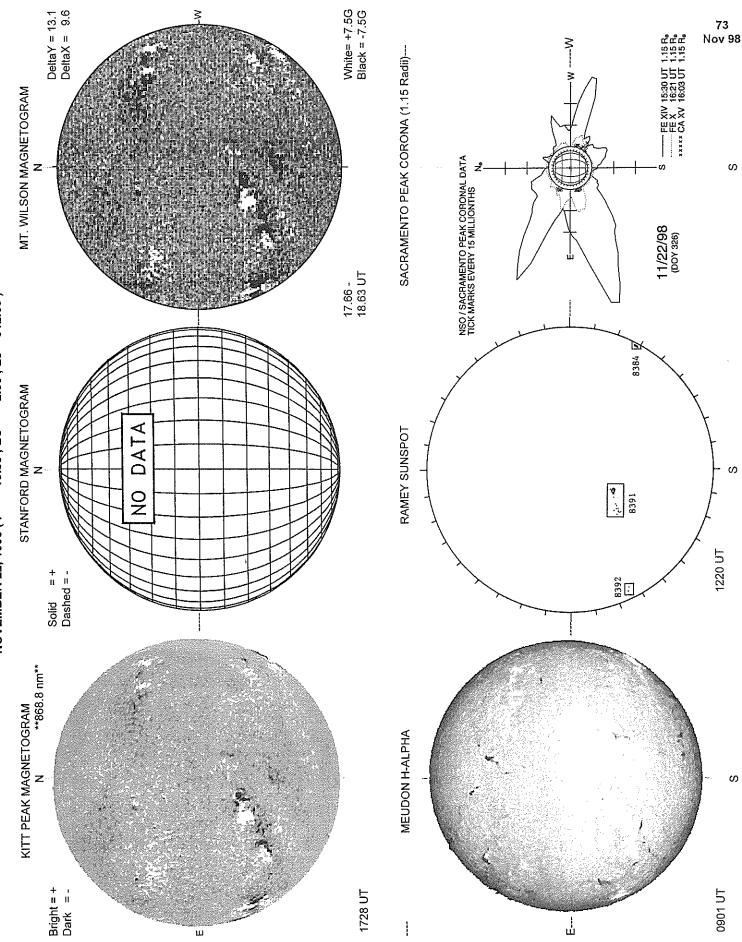


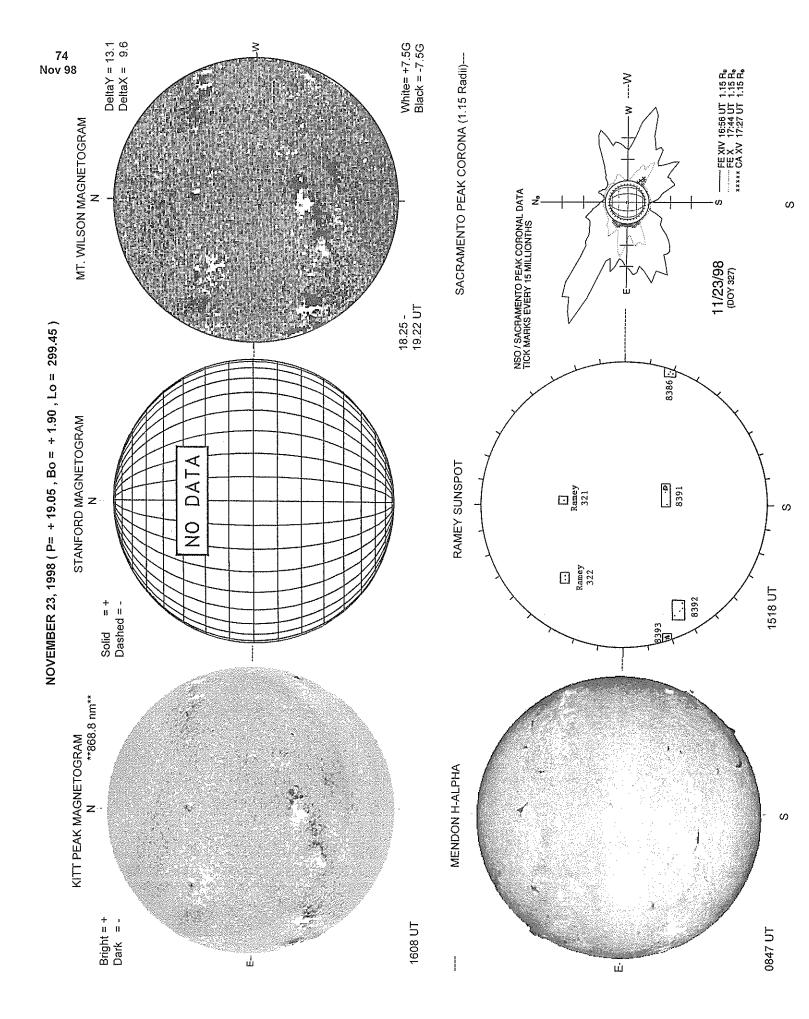


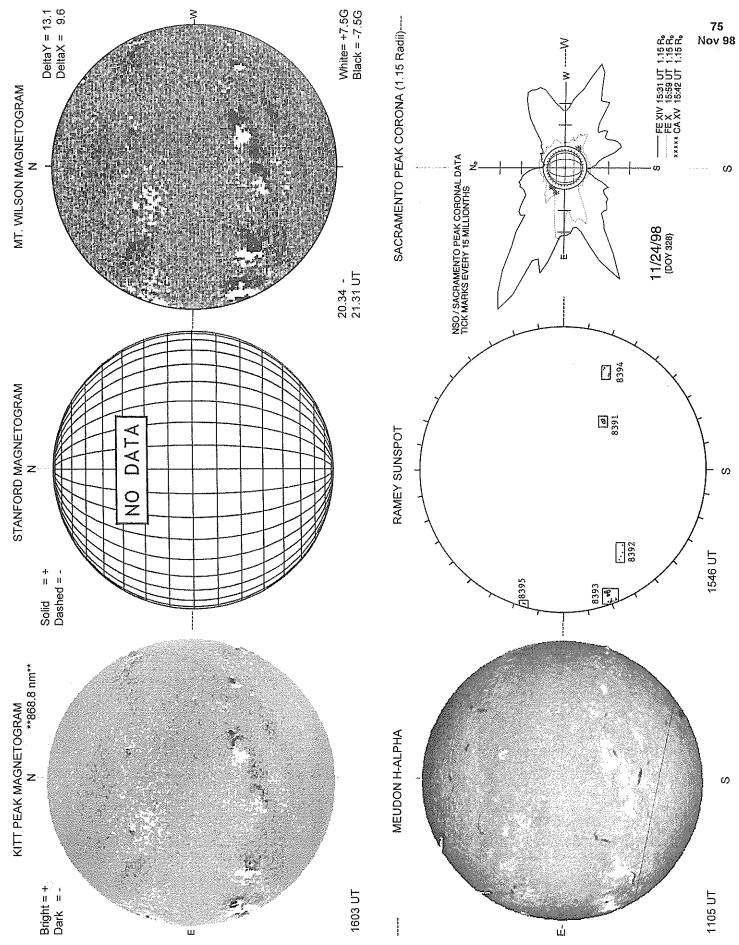


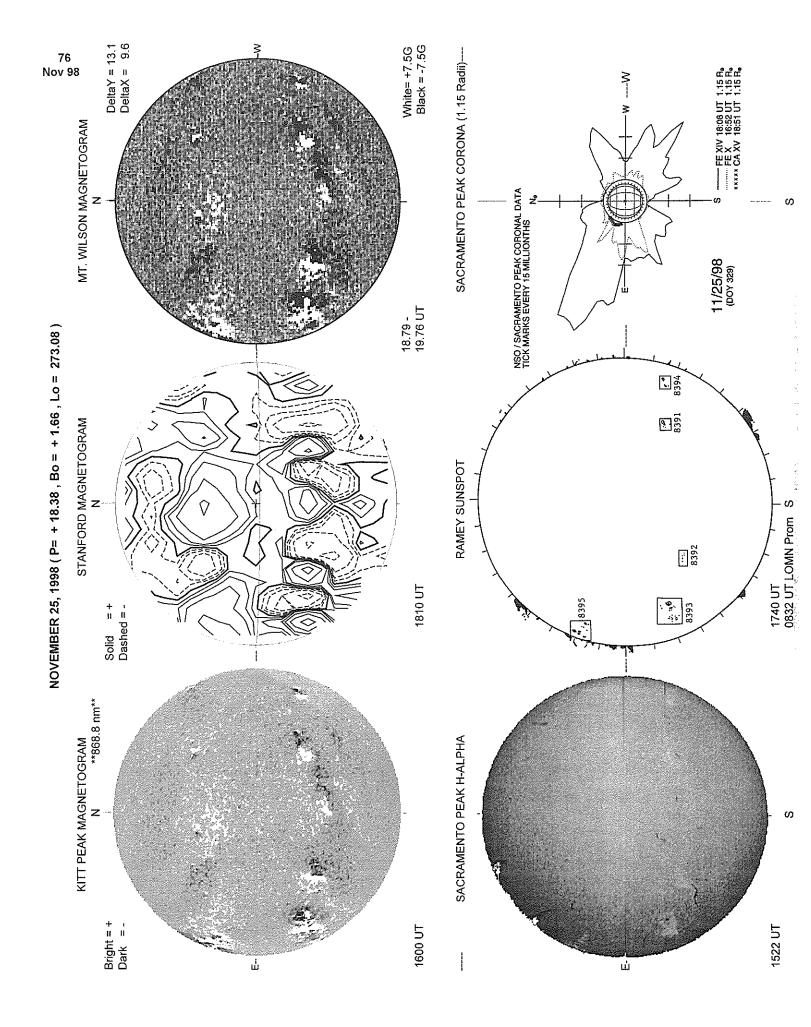


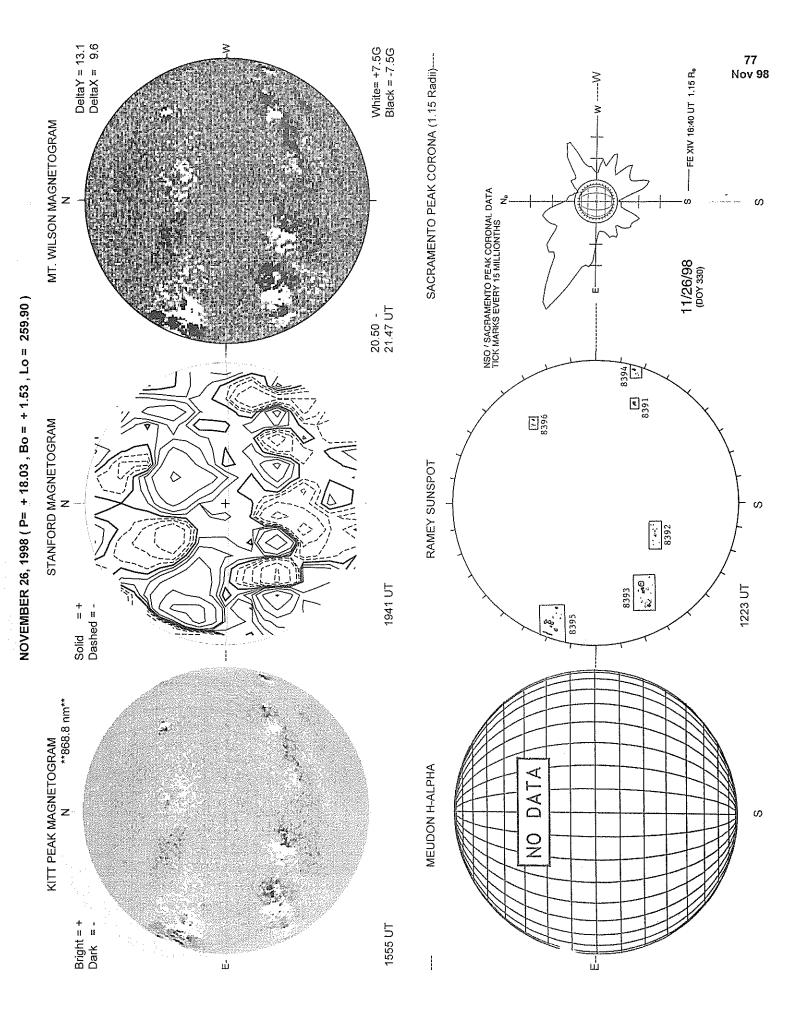


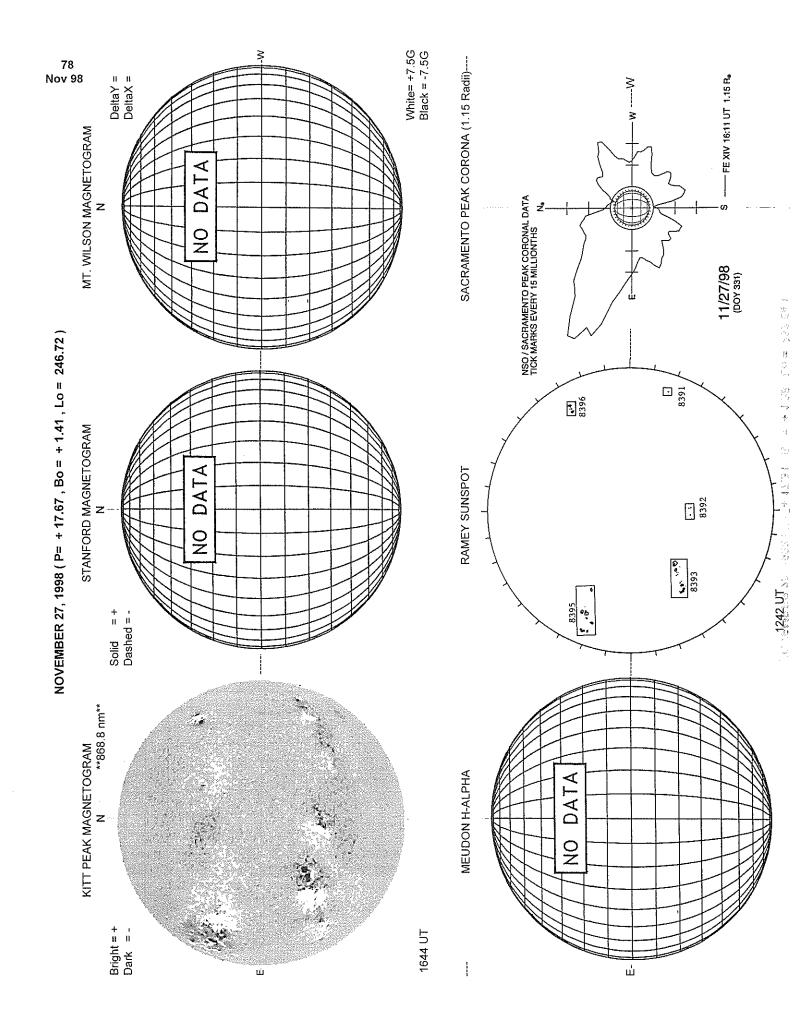

NOVEMBER 18, 1998 (P= + 20.62, Bo = + 2.51, Lo = 5.35)

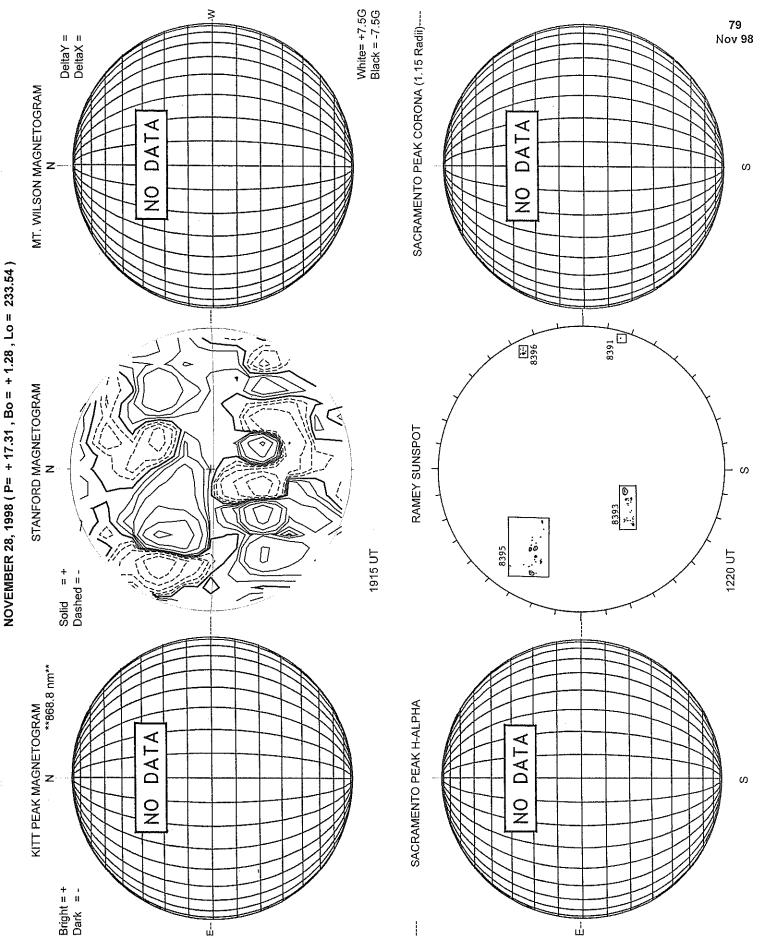


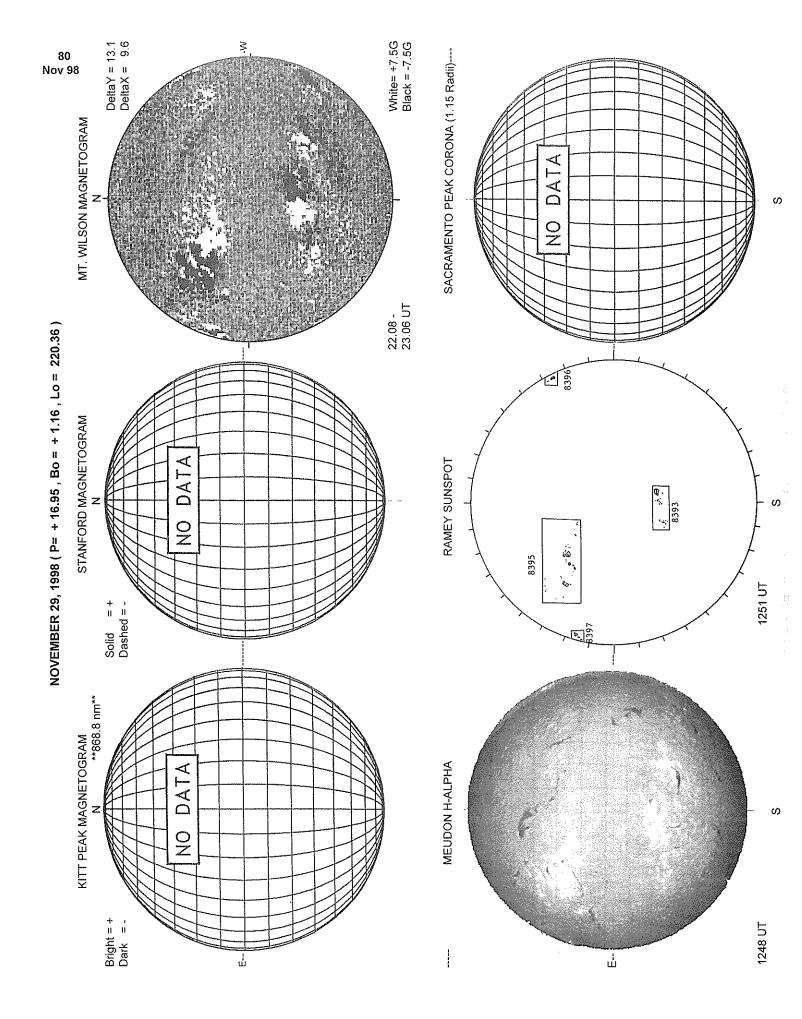

NOVEMBER 20, 1998 (P= + 20.02, Bo = + 2.27, Lo = 338.99)

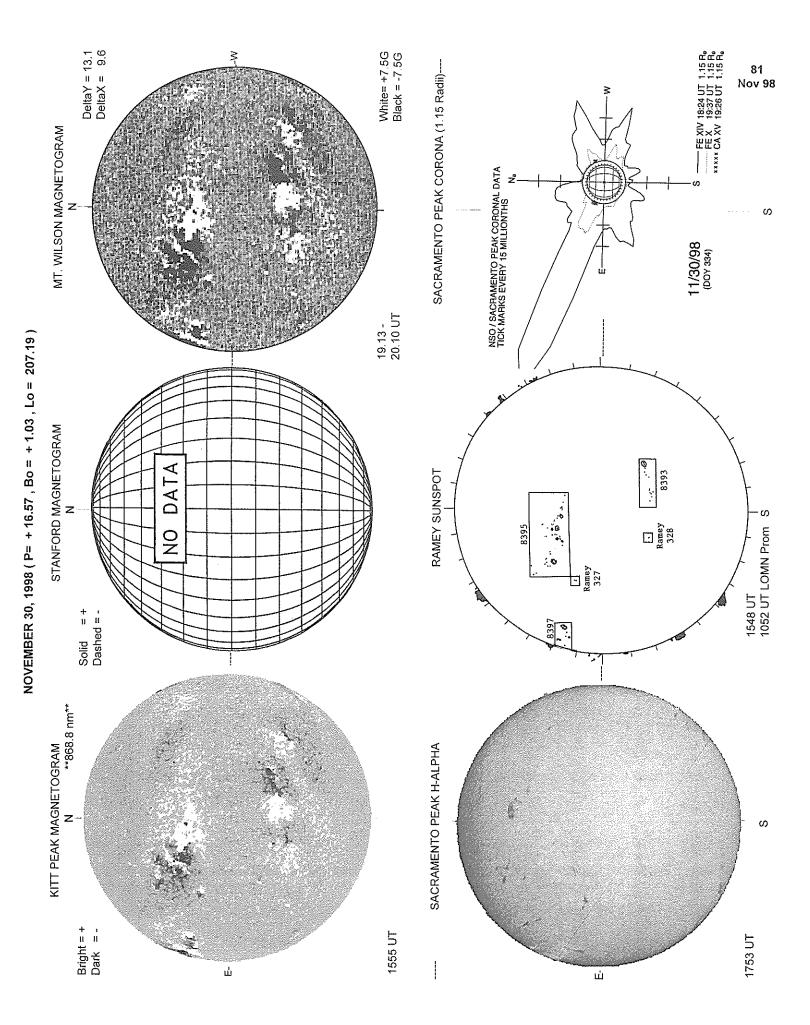



NOVEMBER 22, 1998 (P= + 19.38, Bo = + 2.03, Lo = 312.63)

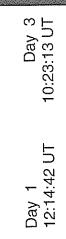


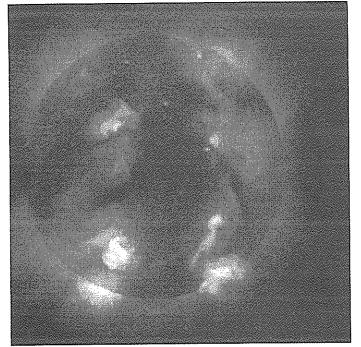


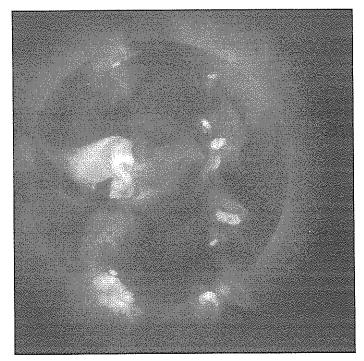

NOVEMBER 24, 1998 (P= + 18.72, Bo = + 1.78, Lo = 286.27)

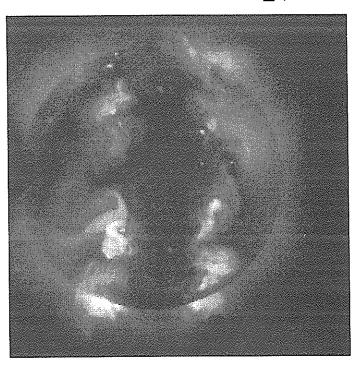


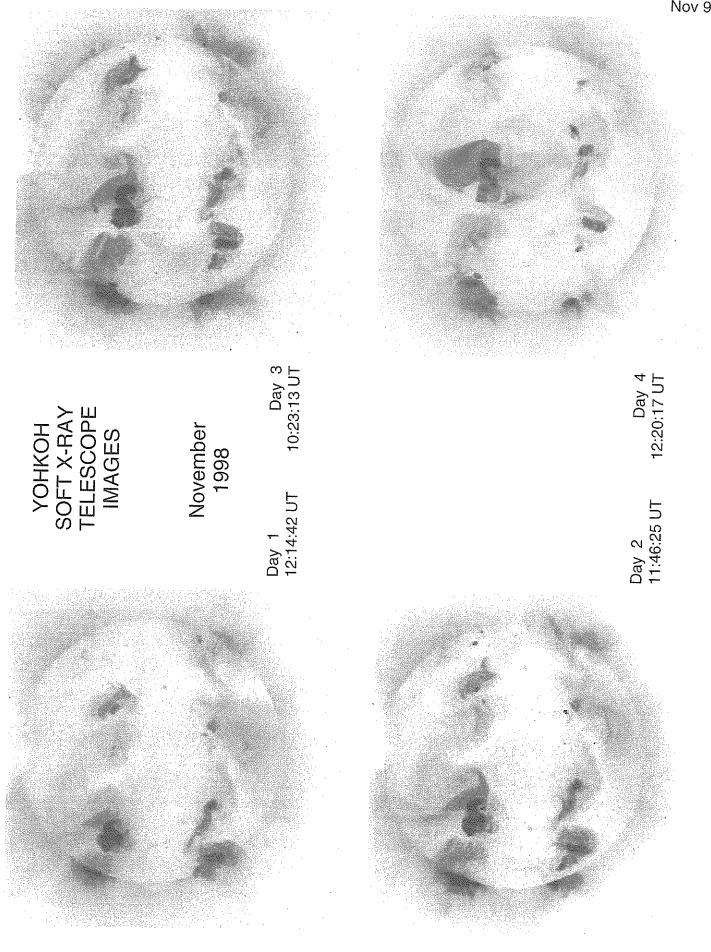


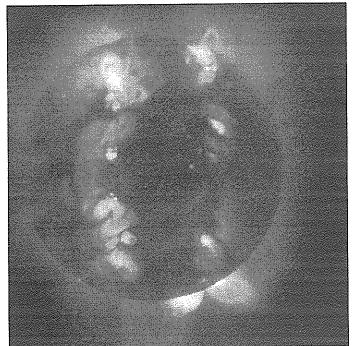





YOHKOH SOFT X-RAY TELESCOPE IMAGES

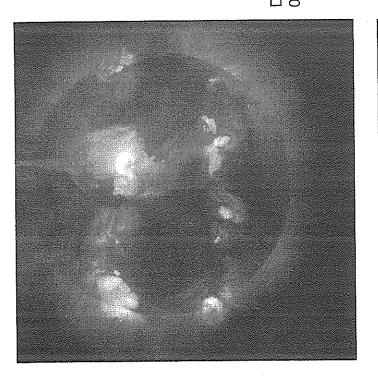

November 1998

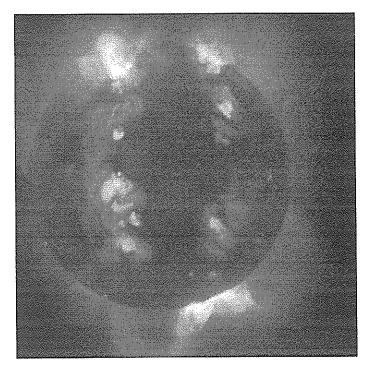




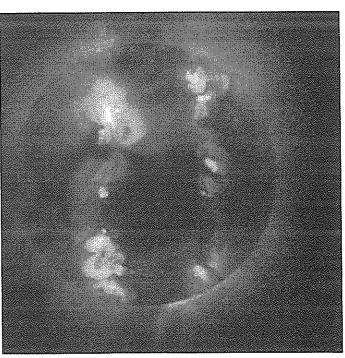
Day 4 12:20:17 UT

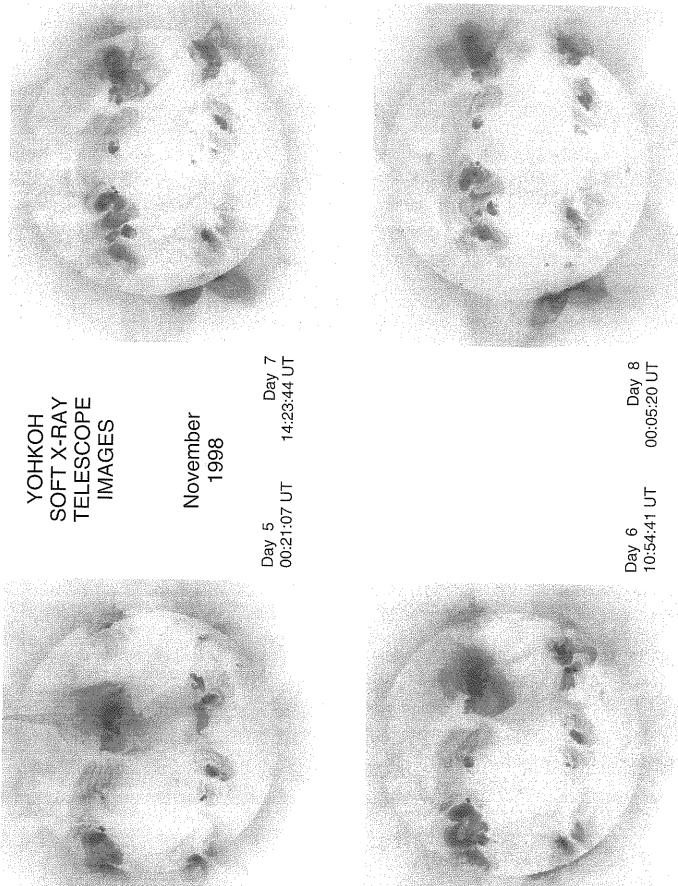
Day 2 11:46:25 UT

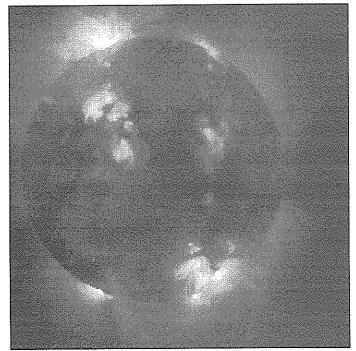




November 1998

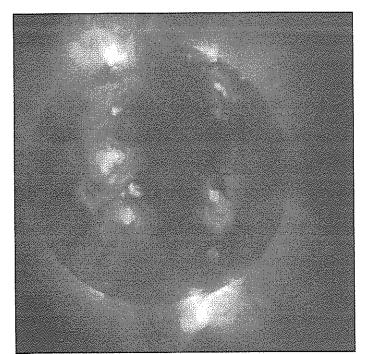

Day 5 Day 7 00:21:07 UT 14:23:44 UT

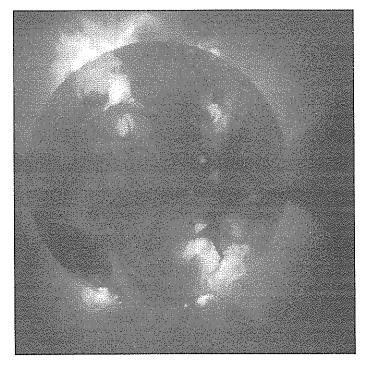


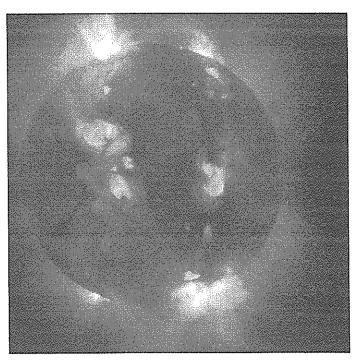


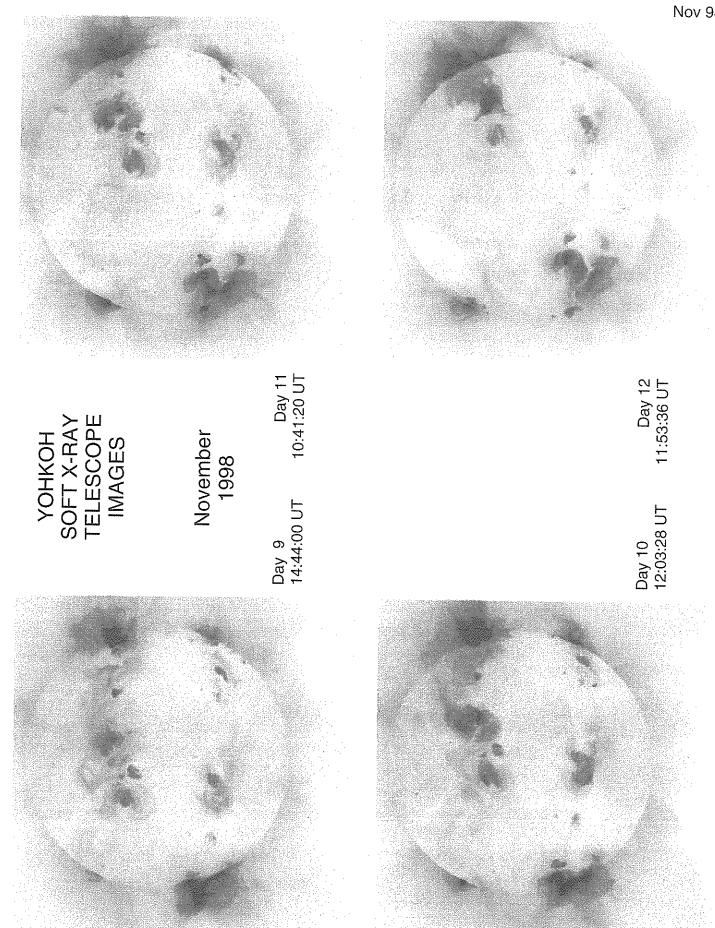
Day 8 00:05:20 UT

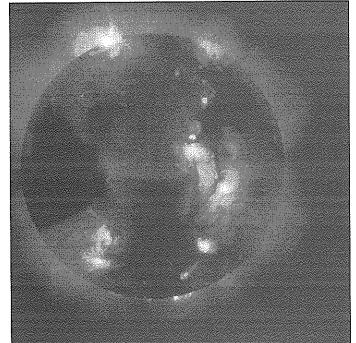
Day 6 10:54:41 UT



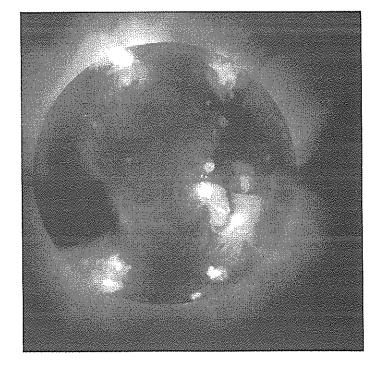


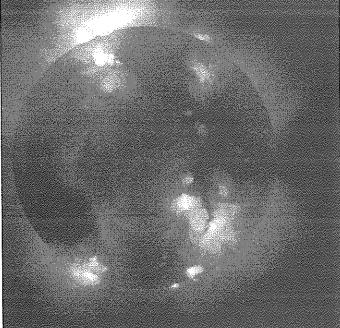

November 1998 Day 9 Day 11 14:44:00 UT 10:41:20 UT

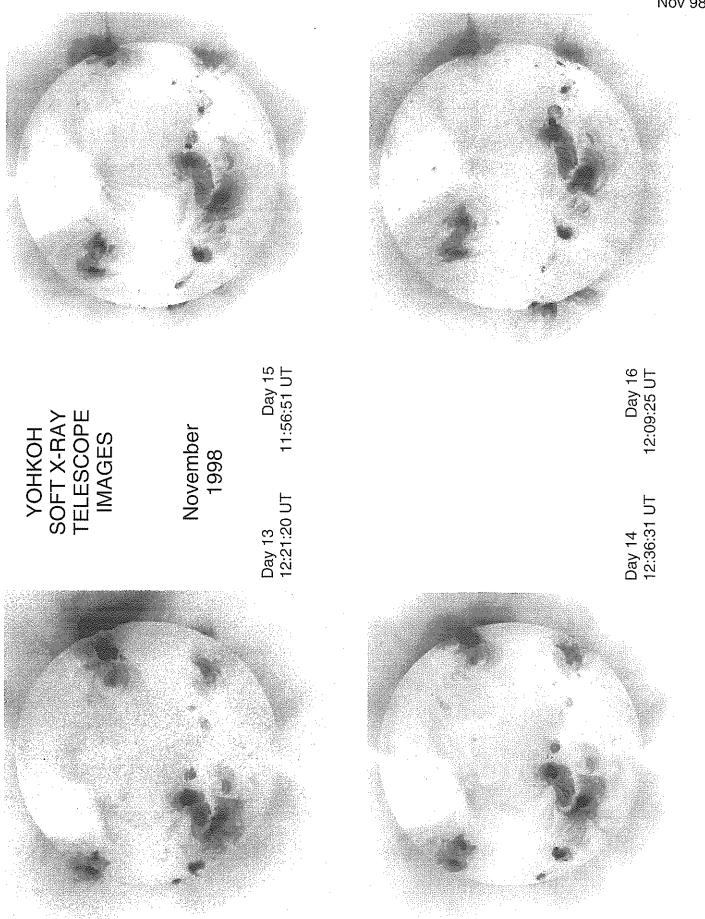


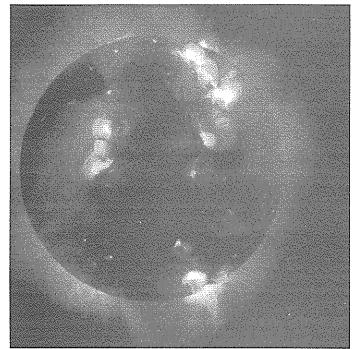

Day 12 11:53:36 UT

Day 10 12:03:28 UT



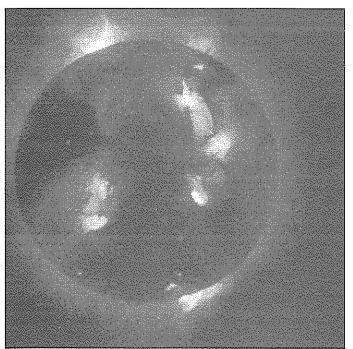


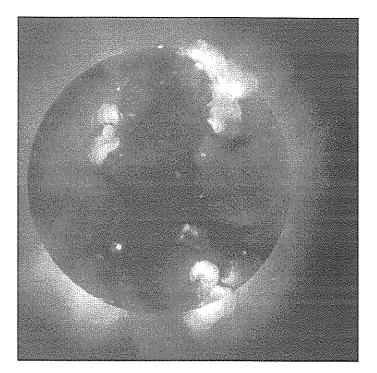




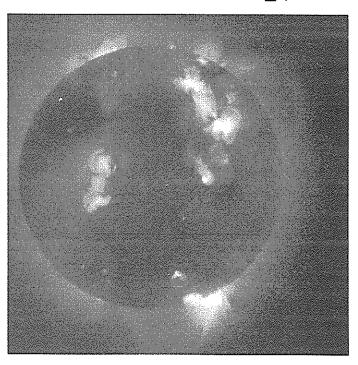
Day 16 12:09:25 UT

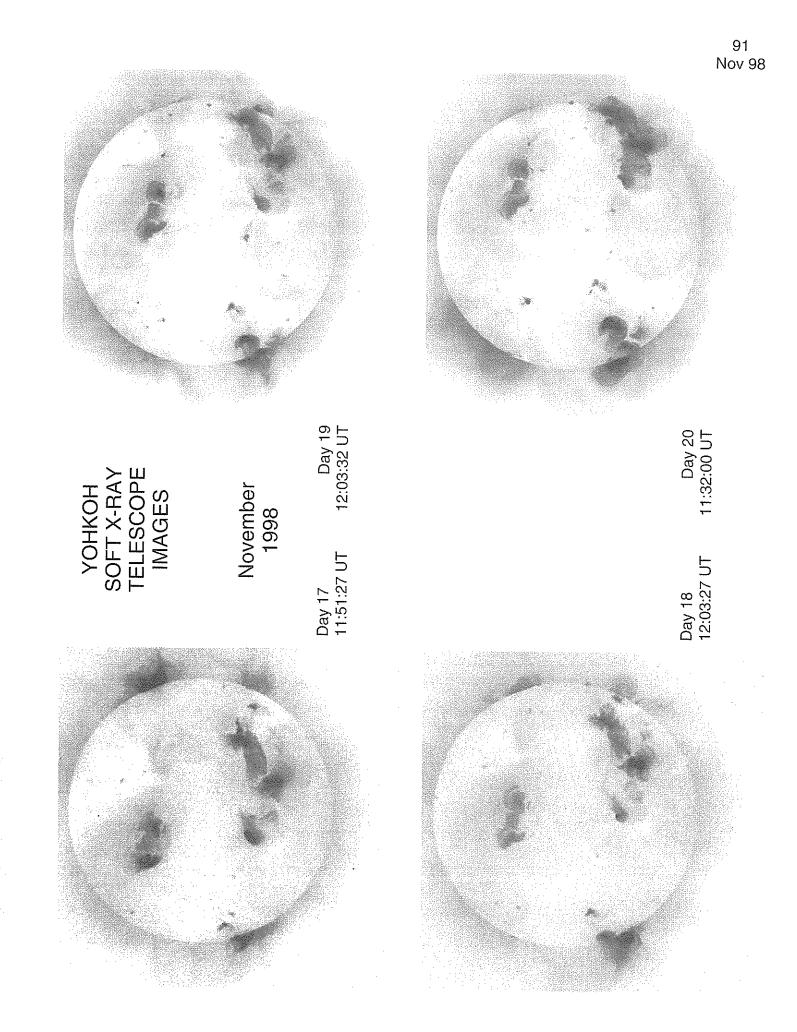
Day 14 12:36:31 UT

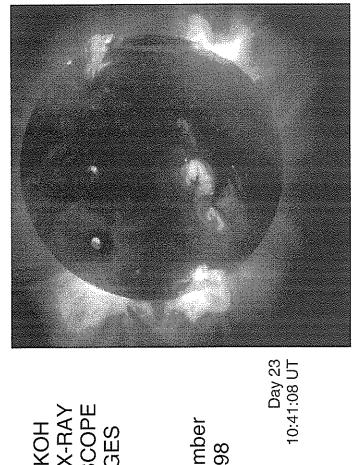




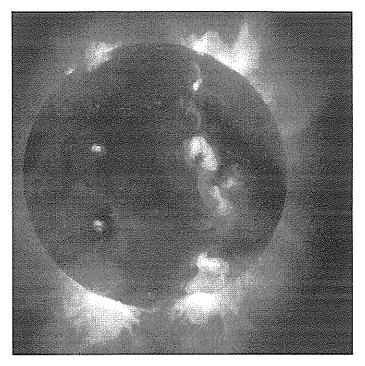
November 1998

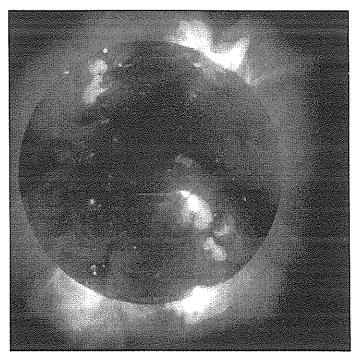

Day 19 12:03:32 UT Day 17 11:51:27 UT



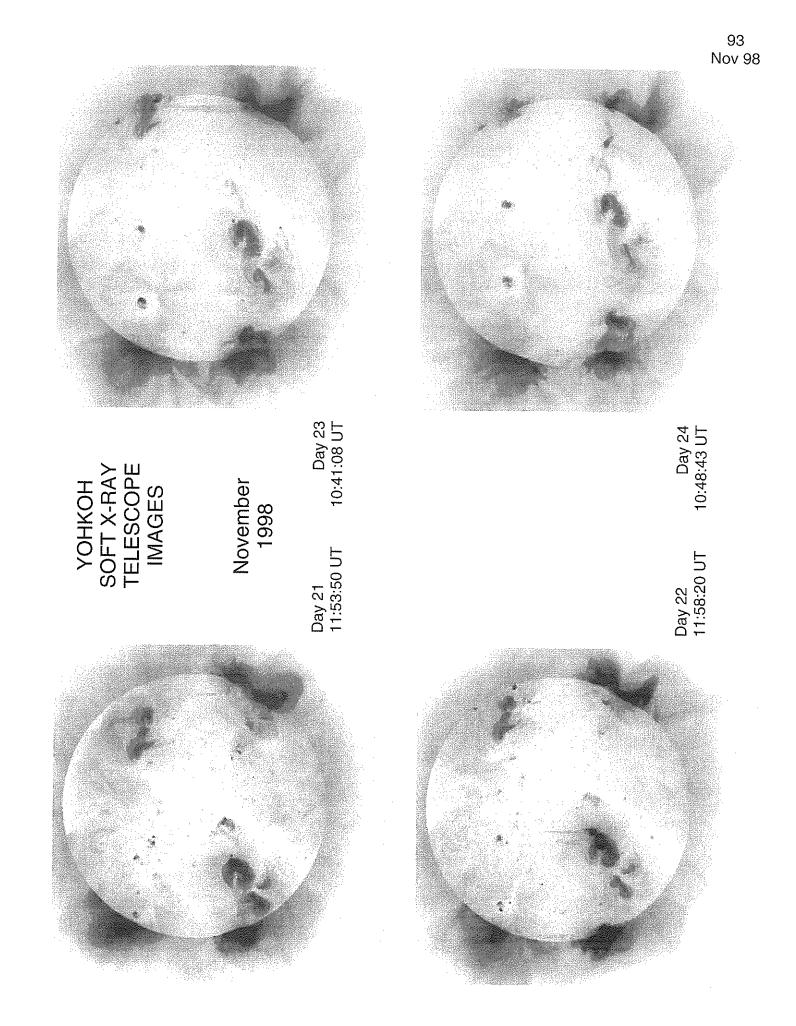


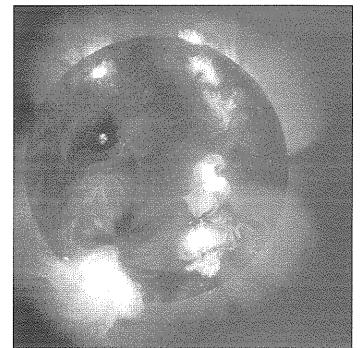
Day 20 11:32:00 UT


Day 18 12:03:27 UT



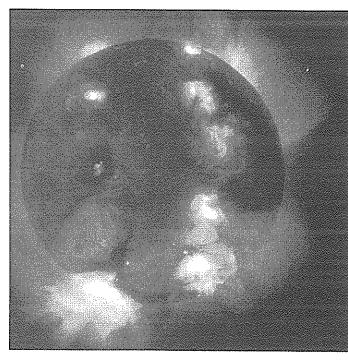
November 1998

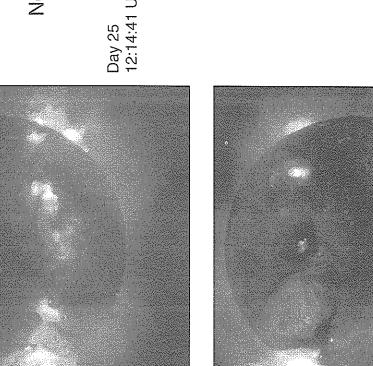

Day 24 10:48:43 UT

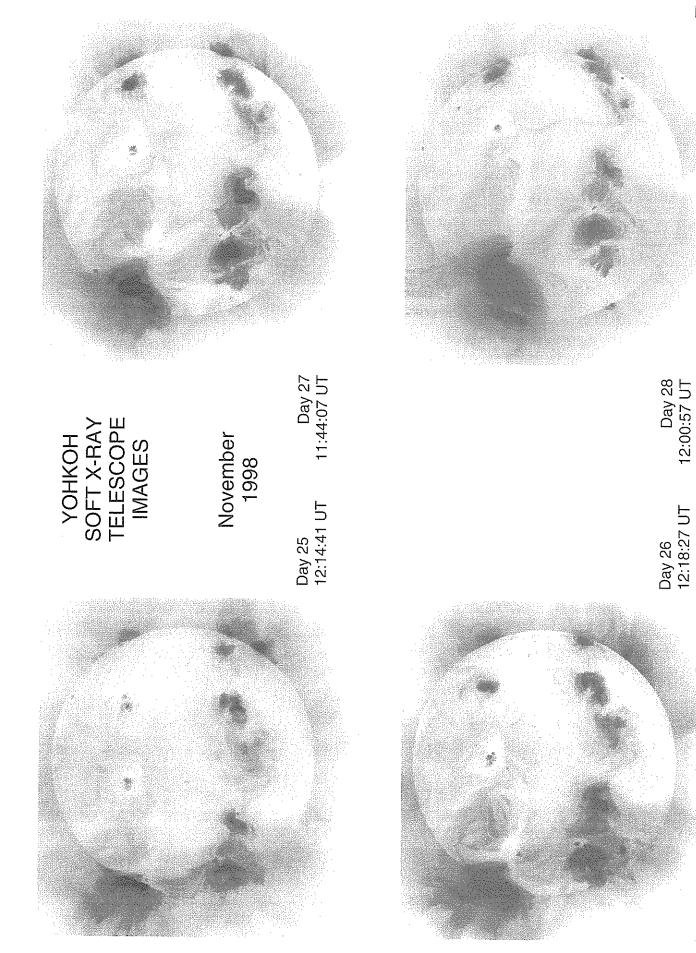

Day 22 11:58:20 UT

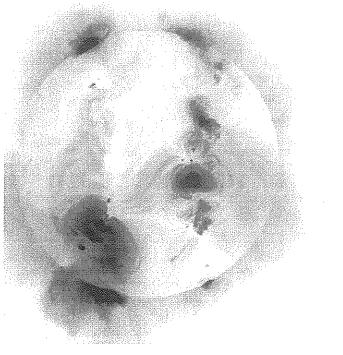
Day 21 11:53:50 UT

YOHKOH SOFT X-RAY TELESCOPE IMAGES



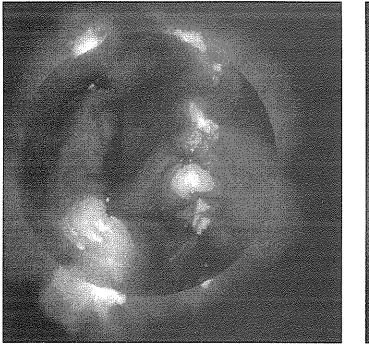


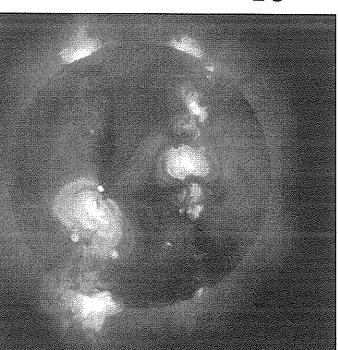




Day 28 12:00:57 UT

Day 26 12:18:27 UT

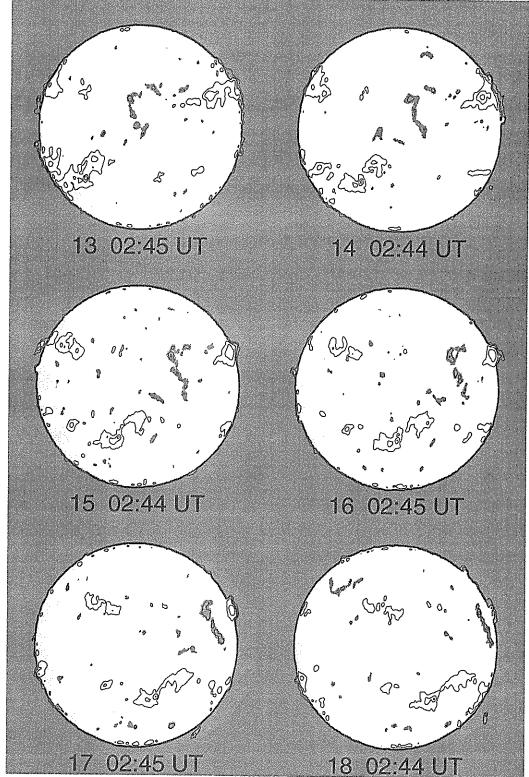



November 1998 Day 29 Day 29 11:28:18 UT 11:28:18 UT

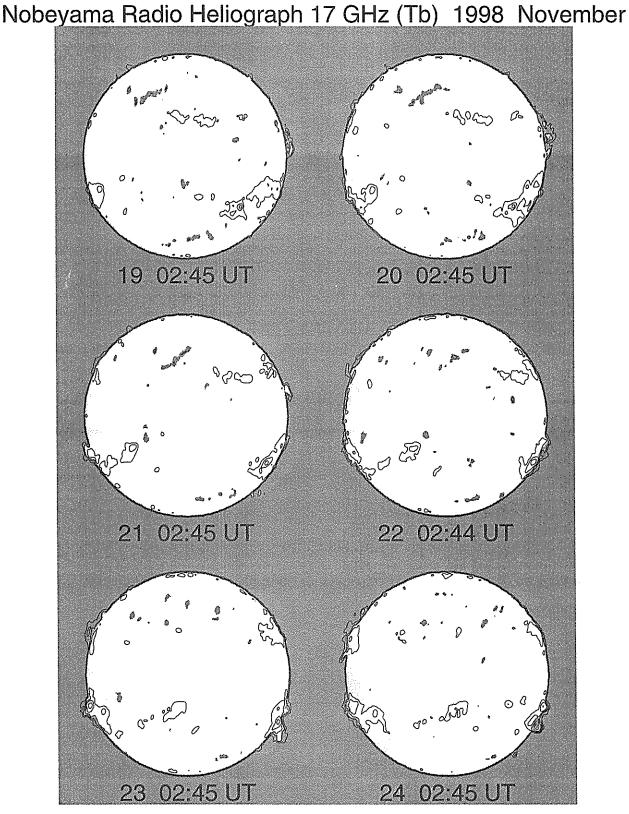
Day 30 T 09:15:50 UT

Day 30 09:15:50 UT

Nobeyama Radio Heliograph 17 GHz (Tb) 1998 November

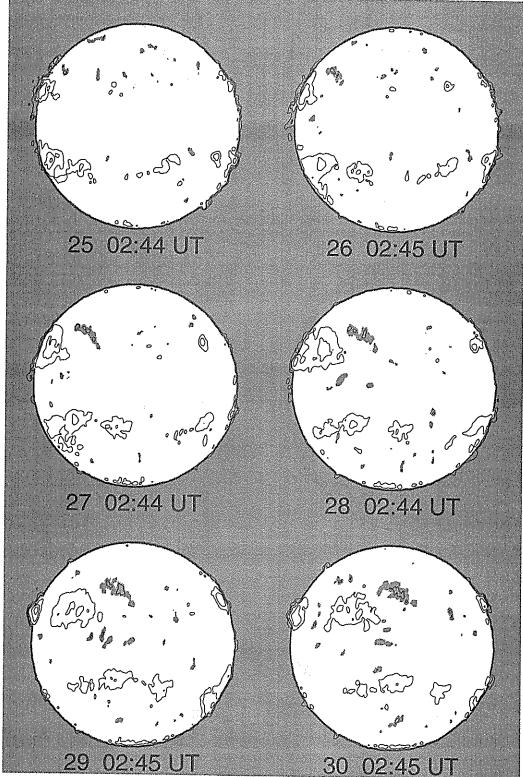

Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K

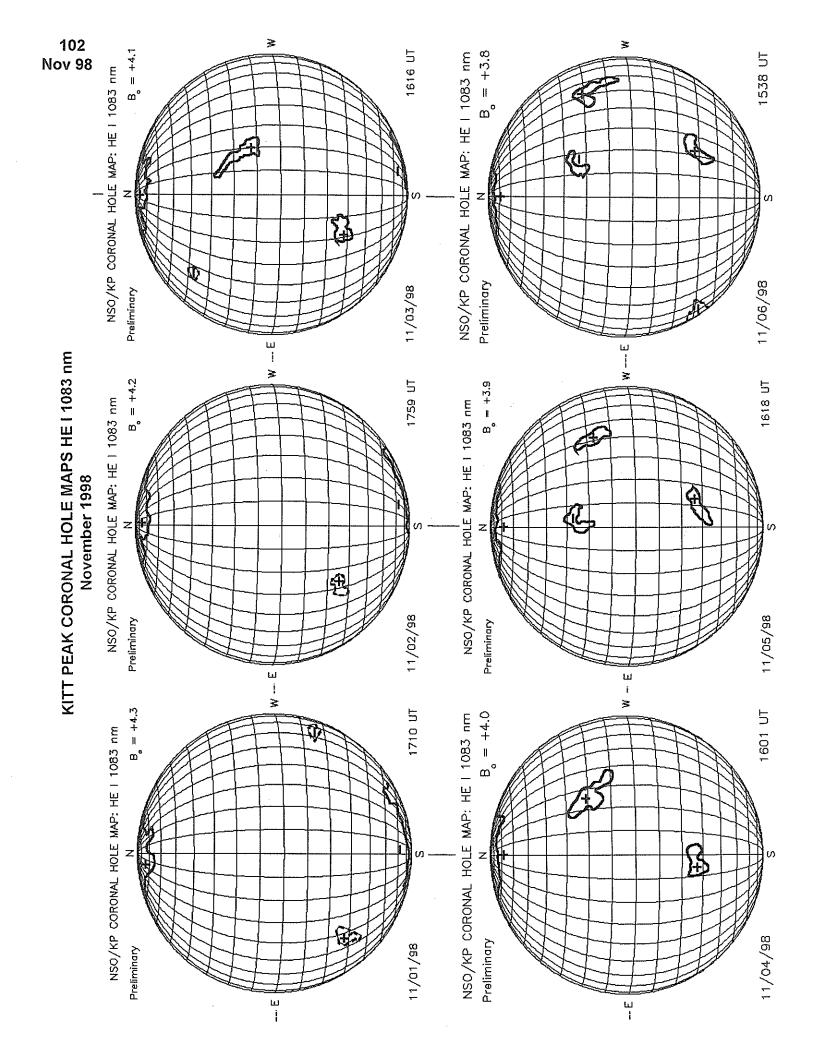
6% ð 08 02:45 UT 07 02:45 UT 0 0 M 09 02:45 UT 10 02:45 UT **A**. 12 02:45 U 02:45 UT 11 12

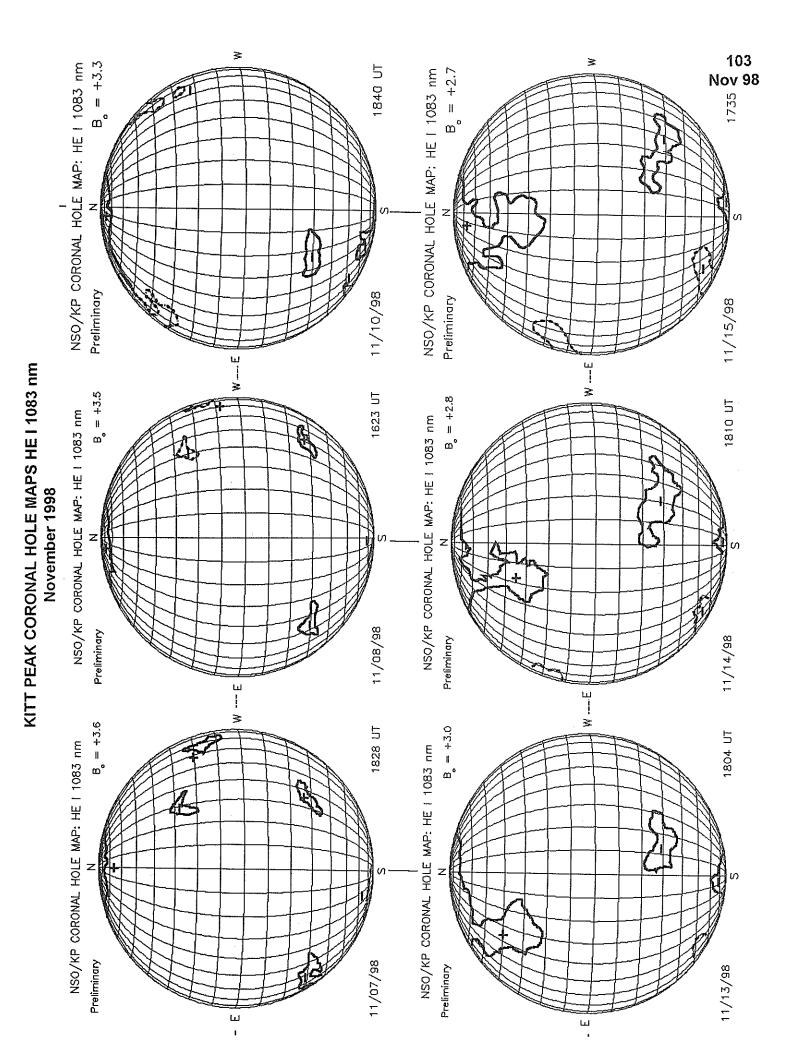

Nobeyama Radio Heliograph 17 GHz (Tb) 1998 November

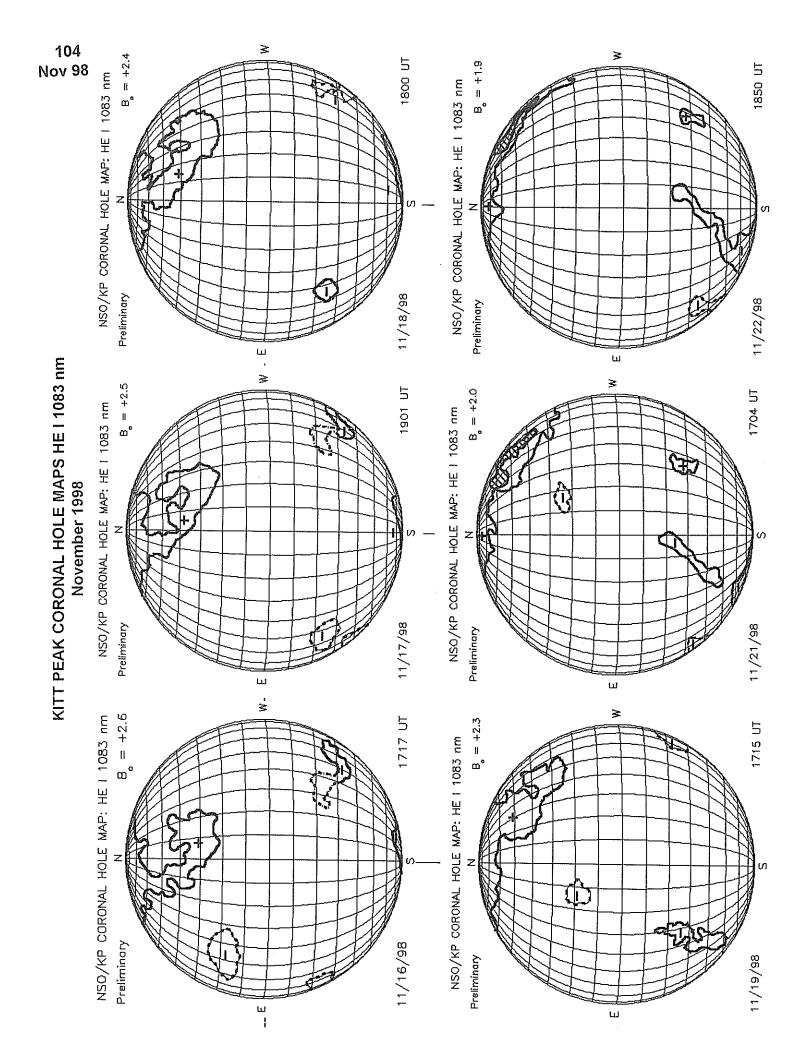
Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K

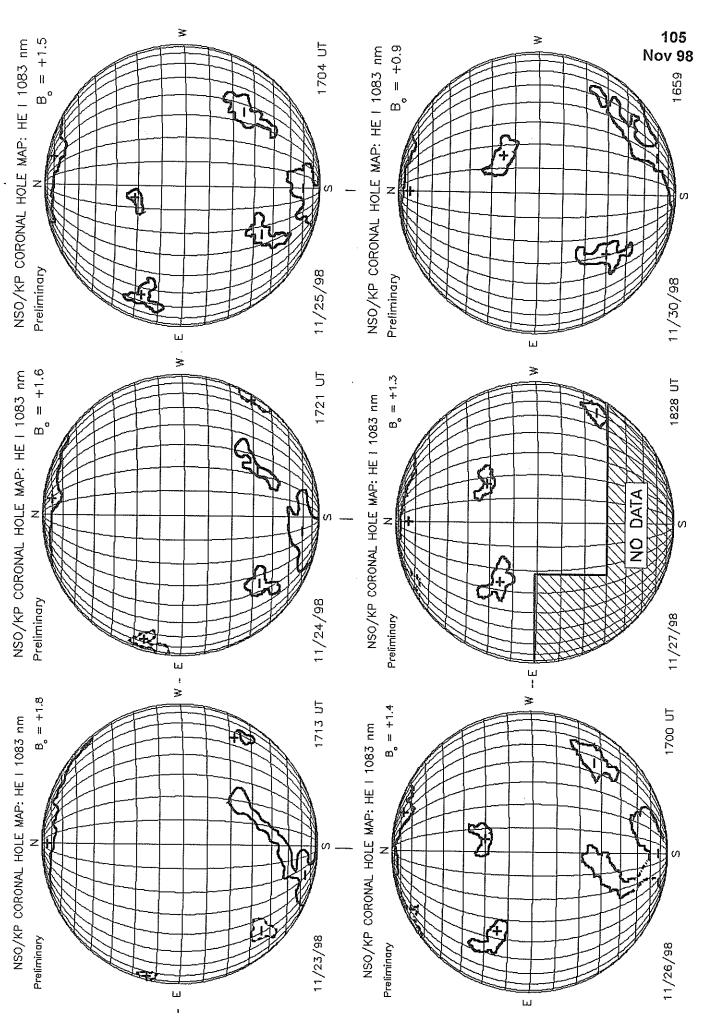
Nobeyama Radio Heliograph 17 GHz (Tb) 1998 November


Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K


Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K


.*


Nobeyama Radio Heliograph 17 GHz (Tb) 1998 November


Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K

SUNSPOT GROUPS (Ordered by Central Meridian Passage Date)

NOVEMBER 1998

NOAA/ USAF Group	Mt Wilson Group	Sta	Observati Ti Mo Day (L	me	Lat CMD		CMP Mo Day		Mag Class	Spot Class	Corrected Area (10-6 Hemi)	Spot Count	Long. Extent (Deg)	Qua
Jup	a, oab	~ ~ ~						H			•			
8379		LEAR			' W16	11	2.8		В	BXO	10	3	3	4
8379		TACH			′ W18	11	2.8			BRO	11	3	3	3
8379		KAND			W21	11	2.8			CSO		9	4	4
8379		RAMY			W23	11	2.8	_	В	CRO	20	8	4	3
8379	28869	MWIL			W24	11	2.8	5	(B)					
8379		HOLL			W23	11	2.9		B	CSO	40	6	3	3 4
8379		LEAR			W29	11	2.8		В	CSO	40	6	5	
8379		KAND			W34	11	2.7			CRO		7	7	3
8379		RAMY			₩37	11	2.7		В	CSO	20	7	6	3
8379	28869	MWIL			W38	11	2.7	4	(B)					
8379		HOLL			W37	11	2.8		В	DSO	80	11	6	3
8379		VORO			₩45	11	2.5			CAI	69	4	12	3
8379		LEAR			W43	11	2.8		В	DAI	50	10	8	
8379		TACH			W46	11	2.7			BRO	56	2	5	3332
8379		KAND			W50	11	2.5		_	CAI		7	11	
8379		RAMY			W49	11	2.8		В	CAO	30	15	9	5
8379		SVTO			W51	11	2.7		В	CAI	120	13	9	2
8379	28869	MWIL			W51	11	2.7	5	(BF)					-
8379		LEAR			W56	11	2.7		В	DAO	100	10	10	3
8379		VORO			W28	11	2.7			HAX	195	3	7	3
8379		TACH			W59	11	2.7			BRO	48	7	8	2
8379		KAND			W62	11	2.6		-	CAO		7	11	3
8379		RAMY			W63	11	2.7		В	CAO	100	9	11	4
8379	28869	MWIL			W64	11	2.8	4	(BF)			_		
8379		HOLL			W69	11	2.4		В	CAO	60	5	12	4
8379		VORO			W65	11	3.0			HAX	183	2		3
8379		LEAR			W71	11	2.6		В	DAO	300	5	10	3 4
8379		TACH			W72	11	2.7			CRO	51	2	10	4
8379		RAMY			₩74		2.9		В	CAO	60	4	5	3 3
8379		HOLL			W72	11	3.1		A	HS	30	1	1	3
8379		VORO			W72	11	3.4			HAX	119	2	_	3 4
8379		LEAR			W79	11	3.0		A	HA	30	3	2 2	
8379		SVTO	11 09 07	740 s20	W87	11	2.7		A	HR	30	1	2	3
8373		HOLL	10 28 18	30 s23	E72	11	3.3		А	AX	10	1		3
8373		VORO	10 28 22	255 s24	E71	11	3.4			HRX	108	3		3
8373		TACH		36 S24	E66	11	3.3			AXX	10	1	1	3
8373		LEAR	10 29 05	27 s25	E65	11	3.3		Α	AX	10	1	1	2
8373		SVTO	10 29 07		E67	11	3.5		Α	AX	10	1		332254 4
8373		KAND			E64	11	3.3			AX		3	2	5
8373		HOLL			E62	11	3.4		Α	AX	20	3	2	4
8373		RAMY			E62	11	3.5		В	BXO	10	2	2	2
8373		LEAR			E55	11	3.3		В	DAO	40	3	3	4
8373		TACH			E50	11	3.1		-	AR	5	2	2	4
8373		KAND			E52	11	3.3			BXO	-	3	2	2
8373		SVTO			E53	11	3.4		B	DRO	20	2	ž	3
8373		RAMY			E47	11	3.2		A	AX	10	2	3	4
8373		HOLL			E47	11	3.2		B	BXO	20	2	2	2
8373	28861	MWIL			E50	11	3.5	4	(BP)	2.10			-	
8373	20001	LEAR			E40	11	3.1		B	CRO	30	3	3	3
8373		VORO			E41	11	3.2		-	AXX	35	3	-	3 3 4
8373		TACH			E39	11	3.2			BXO	8	2	6	4
8373		SVTO			E39	11	3.4		В	BXO	10	4	8	3
8373		RAMY			E36	11	3.3		В	BXO	10	3	8	3 4
8373	28861	MWIL			E35	11	3.3	3	(B)			-	-	
8373		HOLL			E31	11	3.1	-	B	вхо	20	3	3	3
8373		LEAR			E33	11	3.6		Ā	AX		2	2	3
8373		KAND			E27	11	3.5			вхо		3	2	5
8373		RAMY			E25	11	3.4		В	BXO	10	4	4	3
8373	28860	MWIL			E24	11	3.5	3	(BF)	27.0		.1	.4	5
8373	LUUUU	LEAR			E16	11	3.3	2	B	вхо	10	3	4	4
8373	28860	MWIL			E11	11	3.5	3	(B)	UNU	10	4	7	+
8373	20000	HOLL			E13	11	3.6	د.	A	AX	10	1	1	7
8373		SVTO			E03	11	3.5		B	CSO	40	3	4	3
8373		RAMY			E02	11	3.7			AX	40	1		4
8373	28860	KAMT MWIL			W02	11	3.5	3	A (P)	ΗΛ		ł		4
8373	20000					11	3.5 3.6	3	(B)	вхо	20	3	ι.	,
(1)()		HOLL			W01		5.6 3.4		B B	DSO	20 30	د 12	4	4
8373 8373		LEAR VORO			2 W08 2 W09	11 11	3.5		Þ	BXI	47	5	5 3	4 3

SUNSPOT GROUPS (Ordered by Central Meridian Passage Date)

NOVEMBER 1998

NOAA/ USAF Group	Mt Wilson Group			vation Time ay (UT)	Lat OV		MP	Max	Mag	Spot	Corrected Area	Spot	Long. Extent	
eroup	Group	Sta	mo ua	iy (UI)	Lat CMD	MO	Day	H	Class	Class	(10-6 Hemi)	Count	(Deg)	Qua
8373		TACH	11 04		\$22 W10	11	3.4			BRO	15	8	3	3
8373		KAND	11 04		S21 W10	11	3.6		_	BXO		13	10	4
8373 8373	28860	RAMY MWIL	11 04 11 04		S23 W14 S22 W15	11	3.4	,	B	CAO	30	11	6	3
8373	20000	HOLL	11 04		S22 W15	11 11	3.5 3.4	4	(B)	000	100	•	,	-
8373		VORO	11 04		\$20 W22	11	3.3		В	DSO CAI	100 157	9 7	4 9	3
8373		LEAR	11 05		S21 W20	11	3.5		в	CAO	20	13	5	3 4
8373		KAND	11 05		S21 W24	11	3.5		b	BXO	20	7	4	3
8373		RAMY	11 05		\$22 W27	11	3.4		В	BXO	10	8	4	3
8373	28860	MWIL	11 05		\$22 W28	11	3.5	4	(BF)	DAG	10	U	7	5
8373		HOLL	11 05		S23 W26	11	3.6	•	В	CSO	60	6	5	3
8373		VORO	11 05	2319	\$23 W32	11	3.5			DAI	202	7	4	ž
8373		LEAR	11 06		\$21 W34	11	3.4		В	BXO	20	7	5	3
8373		RAMY	11 06		S23 W38	11	3.6		Α	AX		1		3
8373		TACH	11 09	0530	S18 W79	11	3.2			AXX	5	1	1	5
8374 8374		TACH LEAR	10 29 10 29	0436 0527	S18 E73 S18 E75	11 11	3.7 3.9		A	AXX HA	. <u>3</u> 60	1 1	1 1	3
8374		SVTO	10 29	0710	S10 E79	11	4.3		Â	HA	60	1	3	2
8374		KAND	10 29	0900	S18 E74	11	4.0		~	AX	00	3	3	2 5
8374		HOLL	10 29	1456	\$17 E71	11	4.0		Α	HS	50	1	ž	4
8374		RAMY	10 29	1825	\$16 E73	11	4.3		A	HS	30	1	2	2
8374		LEAR	10 30	0052	S18 E65	11	4.0		A	HA	30	3	2	4
8374		TACH	10 30	0528	S19 E62	11	3.9			AXX	15	1	1	4
8374		KAND	10 30	0730	\$18 E62	11	4.0			HA		2	2	2
8374		SVTO	10 30	0730	\$18 E64	11	4.2		A	HS	70	2	2	3
8374 8374		RAMY	10 30 10 30	1442	\$18 E58	11	4.0		A	HS	40	1	2	4
8374	28862	HOLL MWIL	10 30	1455 1530	S16 E58 S18 E56	11 11	4.0	4	A	HS	40	1	2	2
8374	20002	LEAR	10 30	0049	\$18 E50	11	3.9 3.8	4	(AP) B	CIO	70	~	<u>,</u>	-
8374		VORO	10 31	0116	\$17 E53	11	4.1		в	CAO Hax	30 43	3 1	2	3
8374		TACH	10 31	0556	\$16 E49	11	4.0			AXX	43 25	1	2	3 4
8374		SVTO	10 31	0920	S18 E46	11	3.9		в	BXO	10	4	5	3
8374		RAMY	10 31	1210	S18 E45	11	3.9		Ā	AX	10	3	2	4
8374	28862	MWIL	10 31	1500	S18 E44	11	4.0	3	(AP)			-	~	-
8374		HOLL	10 31	1656	S17 E43	11	4.0		A	вхо	20	2	3	3
8374		VORO	10 31	2239	S17 E40	11	4.0			AXX	13	1		3
8374		KAND	11 01	0945	S18 E34	11	4.0			AX		3	2	5
8374	200/4	RAMY	11 01	1230	S18 E31	11	3.9	_	A	AX	10	3	1	3
8374	28861	MWIL	11 01	1500	S18 E30	11	3.9	3	(AP)					
8374 8374	20041	RAMY	11 02 11 03	1340	S20 E17	11	3.9	-	A	AX	10	3	2	4
8374	28861 28861	MWIL MWIL	11 05	1515 1500	S17 E04 S17 W09	11 11	3.9 3.9	3 4	(AP) (AP)					
8374A		LEAR	11 01	0018	S29 E38	11	4.0		A	HR	10	2	2	3
8375в		TACH	11 08	0500	s21 w53	11	4.1		n	DAI	233	⊢ 1	4	
8375		HOLL	10 28	1830	N18 E89	11	4.5		٩					4
8375		VORO	10 28	2255	N18 E86	11	4.5		A	HH Hax	140 270	1 1	3	3 3
8375		TACH	10 29	0436	N18 E77	11	4 0			HSX	70	1	3	3
8375		LEAR	10 29	0527	N16 E78	11	4.1		Α	HA	120	1	1	2
8375		SVTO	10 29	0710	N17 E80	11	44		A	НΚ	210	ź	4	2
8375		KAND	10 29	0900	N18 E80	11	4 5			HS		2	3	5
8375		HOLL	10 29	1456	N19 E77	11	4.5		BG	СНО	210	3	5	4
8375		RAMY	10 29	1825	N20 E76	11	4.6		В	CSO	160	3	11	2
8375		LEAR	10 30	0052	N16 E70	11	4.3		В	СКО	170	4	11	4
8375		TACH	10 30	0528	N17 E67	11	4.3			HSX	150	1	4	4
8375 8375		KAND	10 30	0730	N17 E68	11	4.5			СНО	6 /6	4	6	2
8375		SVTO RAMY	10 30 10 30	0730 1442	N18 E67 N17 E65	11	4.4 4.5		B	CHO	240	7	8	3
8375		HOLL	10 30	1442	N17 E65	11 11	4.3		B B	CHO	330	5	9	4
8375	28863	MWIL	10 30	1530	N19 E01	11	4.3 4.3	4	в (AP)	CHO	190	5	5	2
8375		LEAR	10 31	0049	N16 E57	11	4.3	7	B	ско	170	5	10	3
8375		VORO	10 31	0116	N18 E57	11	4.4		2	НКХ	346	1	10	3
8375		TACH	10 31	0556	N19 E53	11	4.3			HSX	200	1	4	4
8375		SVTO	10 31	0920	N17 E54	11	4.5		в	ско	240	5	8	3
8375		RAMY	10 31	1210	N17 E51	11	4.4		B	СКО	310	8	9	4
8375	28863	MWIL	10 31	1500	N18 E48	11	4.3	5	(BP)					

				1	NOVEMB	ĽК	199	0				
NOAA/	Mt		Observation		****				Corrected		Long.	
USAF	Wilson		Time		CMP	Max	Mag	Spot	Area	Spot	Extent	
Group	Group	Sta	Mo Day (UT)	Lat CMD	Mo Day	H	Class	Class	(10-6 Hemi)	Count	(Deg)	Qual
8375		HOLL	10 31 1656	N19 E48	11 4.4		В	СНО	280	7	6	3
8375		VORO	10 31 2239	N18 E45	11 4.4		В	НКХ	368	2	D	3
8375		LEAR	11 01 0018	N15 E45	11 4.4		В	СКО	240	7	9	3
8375		TACH	11 01 0506	N17 E36	11 3.9			AXX	1	1	1	3 3
8375		TACH	11 01 0506	N18 E41	11 4.3		_	HAX	251	4	4	3 2
8375 8375		SVTO	11 01 0716	N17 E42	11 4.5		В	CHO	290	3	6	2
8375		KAND Ramy	11 01 0945 11 01 1230	N18 E39 N18 E38	11 4.4 11 4.4		в	CAO CAO	320	6 7	5 7	5 3
8375	28862	MWIL	11 01 1500	N18 E35	11 4.3	5	(BP)	CAU	520	'	1	2
8375		LEAR	11 02 0050	N18 E32	11 4.5	2	B	сно	140	13	8	4
8375		TACH	11 02 0516	N18 E27	11 4.3			HSX	363	6	6	3
8375		VORO	11 02 0545	N19 E28	11 4 4		_	HKX	399	5	_	2 3 3
8375 8375		SVTO Kand	11 02 1215 11 02 1245	N19 E26 N18 E25	11 4.5 11 4.4		8	CKO	410	21	9 6	3
8375		RAMY	11 02 1245	N20 E25	11 4.4		в	CSO CSO	300	8 24	12	4
8375	28862	MWIL	11 02 1500	N18 E22	11 4.3	6	(BG)	030	200	24	12	4
8375		HOLL	11 02 1525	N18 E24	11 4.5	-	B	CSO	320	12	6	3
8375		VORO	11 02 2316	N18 E18	11 4.3			нкх	432	7		2
8375		LEAR	11 03 0030	N18 E19	11 4.5		В	СНО	230	17	7	3
8375 8375		TACH	11 03 0416	N19 E19	11 4.6		50	CAI	445	10	10	2 3 2 3
8375		SVTO Kand	11 03 0710 11 03 0725	N19 E17 N18 E13	11 4.6 11 4.3		BG	EK I CKO	390	21 9	13 5	5
8375		RAMY	11 03 1213	N19 E12	11 4.4		BG	CSO	290	29	12	3 4
8375	28862	MWIL	11 03 1515	N18 E09	11 4.3	6	(BG)		270		16	-
8375		HOLL	11 03 1520	N18 E10	11 4.4		В	СНО	310	20	7	4
8375		LEAR	11 04 0040	N18 E06	11 4.5		BG	CSI	170	31	12	4
8375		VORO	11 04 0342	N18 E02	11 4.3			нкх	453	7	-	3
8375 8375		TACH Kand	11 04 0512 11 04 0930	N19 E03 N18 W01	11 4.4 11 4.3			CAI	368	17	7 7	3 4
8375		RAMY	11 04 1218	N18 E01	11 4.6		BG	CAO EAI	330	29 30	14	3
8375	28862	MWIL	11 04 1500	N18 W04	11 4 3	6	(BG)	E	550		17	5
8375		HOLL	11 04 1530	N18 W06	11 4.2		В	DKI	390	23	8	3
8375		VORO	11 04 2312	N19 W09	11 4.3			нкх	559	18		3 4
8375		LEAR	11 05 0035	N18 W08	11 4.4		BG	DKI	240	38	2	4
8375 8375		KAND Ramy	11 05 0820 11 05 1221	N18 W15 N18 W15	11 4.2 11 4.4		BG	DKI EAI	290	32 44	7 11	3 3
8375	28862	MWIL	11 05 1500	N18 W18	11 4 2	5	(D)	CAI	674	44	11	2
8375		HOLL	11 05 1555	N18 W17	11 4 4	-	BG	DKC	450	38	8	3
8375		VORO	11 05 2319	N19 W23	11 4.2			DKI	663	32	4	3 3
8375		LEAR	11 06 0105	N19 W22	11 4.4		BG	DAC	330	40	10	3
8375 8375		TACH Kand	11 06 0510 11 06 0840	N21 W24 N17 W29	11 4.4			DAI	486	2	6	3
8375		RAMU	11 06 1244	N17 W29 N18 W29	11 4.1 11 4.3		BG	DAO EKI	370	27 45	9 12	3 3
8375		SVTO	11 06 1414	N18 W33	11 4.1		B	EKI	420	28	14	2
8375	28862	MWIL	11 06 1515	N18 W32	11 4.2	5	(D)				••	-
8375		LEAR	11 07 0013	N18 W36	11 4.3		BG	EAI	210	33	12	3
8375		VORO	11 07 0323	N18 W37	11 4.3			DKI	517	20	7	3
8375 8375		TACH Kand	11 07 0436 11 07 0750	N19 W37 N18 W40	11 4.4			DAI	500	2	8	2
8375		RAMY	11 07 1233	N16 W40	11 4.3 11 4.2		BG	DAI EKI	360	20 55	10 11	3 4
8375	28862	MWIL	11 07 1530	N18 W45	11 4.2	5	(D)	LN.1	200	22		4
8375		HOLL	11 07 1550	N19 W45	11 4.2		BG	DSC	360	31	10	4
8375		VORO	11 07 2334	N20 W48	11 4.3			DKI	799	22	7	3
8375		LEAR	11 08 0028	N18 W49	11 4.3		BGD	EKI	380	37	12	3 4
8375 8375		TACH Ramy	11 08 0500 11 08 1315	N21 W53	11 4 1 11 4 2		Ð	BRO	73	2	5	4 7
8375		HOLL	11 08 1512	N19 W57 N19 W58	11 4.2 11 4.2		B BG	EK I DKC	1290 480	33 33	14 10	ב ד
8375		VORO	11 08 2300	N21 W63	11 4.1		56	DKL	1181	7	4	3 3 3 4
8375		LEAR	11 09 0032	N22 W63	11 4.2		BG	EKC	420	31	13	
8375		TACH	11 09 0530	N22 W64	11 4.3			DAI	561	12	8	5
8375		SVTO	11 09 0740	N20 W68	11 4.1		В	FHI	1100	25	16	3
8375 8375		KAND Ramy	11 09 0800 11 09 1315	N21 W66 N19 W70	11 4.3		n	DAI	710	26	10	3
8375	28862	MWIL	11 09 1515	N19 W70 N21 W68	11 4.2 11 4.4	5	В (В)	EKI	710	18	13	1
8375		HOLL	11 09 1655	N21 W70	11 4.3	2	BG	DKC	750	8	9	1
8375		VORO	11 09 2259	N20 W74	11 4.3			DKI	1050	4	ý.	3
8375		LEAR	11 10 0112	N22 W76	11 4.2		BG	EKI	640	26	13	3
8375		TACH	11 10 0539	N20 W82	11 4.0		~	EAI	760	17	14	3
8375		RAMY	11 10 1443	N19 W80	11 4.5		В	EKI	510	7	14	3

109 Nov 98

8377 RAMY 11 04 1218 N22 E55 11 8.7 B DAO 100 7 3 3 8377 28866 MWIL 11 04 1500 N22 E55 11 8.7 B DAO 100 7 3 3 8377 28866 MWIL 11 04 1500 N22 E53 11 8.7 B DAO 100 7 3 3 8377 HOLL 11 04 1530 N22 E53 11 8.7 A HA 140 4 2 3 8377 VORO 11 04 2312 N23 E52 11 9.0 HAX 208 3 3 8377 LEAR 11 05 0035 N21 E49 11 8.8 B CAO 110 8 5 4 8377 KAND 11 05 0820 N21 E44 11 8.7 CAO 6 4 3	2007/1-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0					······											
Group Group Sta Mo Day (UT) Lat CND Mo Day (UT) E Class (Lass (Loss (Los (Lo				Obs	serv				~	ир	M	M	0		_ .	+	
8375 28862 NULL 11 0 15 M21 kB1 14 4.5 B CAF5 B D D D A 8375 WORD 11 11 1755 M22 kB1 11 4.5 B B D D D D A A A Z Z D <			Sta	Мо	Day		Lat	CMD									Qual
8375 VORD 11 10 1705 N22 VBI 11 4.5 Display Display <thdisplay< th=""> <thdisplay< td="" th<=""><td>8375</td><td>28862</td><td>MWIL</td><td>11</td><td>10</td><td>1515</td><td>N21</td><td>U81</td><td>11</td><td>4.4</td><td>5</td><td>(45)</td><td></td><td></td><td></td><td></td><td></td></thdisplay<></thdisplay<>	8375	28862	MWIL	11	10	1515	N21	U 81	11	4.4	5	(45)					
8375 V080 11 2.1 NAX 222 1 3 8375A 288675 WHL 10 31 1500 N14 ES3 11 4.6 4 (AP) 8382 28872 NHL 11 07 01515 N18 11 5.5 4 (AF) AXX 31 5 3 8382 NV00 11 07015 N18 11 5.5 4 (AF) AXX 31 5 3 8382 NAND 110 07050 N18 V27 11 5.5 8 BXO 20 6 4 4 8382 RAWT 11 07050 N18 V27 11 5.5 8 BXO 20 6 3 8382 LEAR 110 07150 N19 V28 11 5.5 8 BXO 20 5 7 3 8381 28871 WHL 11 0750 826 W17 11 5.6 8 BXO 20	8375		HOLL	11	10						2		DKC	660	6	8	4
Single 28872 Wall 1 No. 10 Single 3 4 $4F_1$ 8382 LEAR 11 07 033 N18 <w18< td=""> 11 5.6 4 AF_2 8382 LEAR 11 07 032 N18<w18< td=""> 11 5.6 A AXX 1 5 3 8382 TACH 11 07 032 N18<w18< td=""> 11 5.5 4 AF 3 3 8382 ZBST AMLL 10 0750 N18<w27< td=""> 11 5.5 B BXO 10 5 4 4 8382 ZBST MALL 10 0750 S26 H5 11 6.2 AX 1 3 8382 ZBST MAH 11 05 S26 H5 11 6.2 AX 1 3 8381 ZBST MAH 11 05 S26 H1 7.1 B EAO 10 <td< td=""><td>8375</td><td></td><td>VORO</td><td>11</td><td>11</td><td>2318</td><td>N23</td><td>W89</td><td>11</td><td>5.1</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td></td<></w27<></w18<></w18<></w18<>	8375		VORO	11	11	2318	N23	W89	11	5.1						0	
8332 LEAR 11 07 0013 N18 L118 11 15.6 A AX 1 3 8332 VORO 11 07 0323 N22 UH8 11 5.5 A AXX 15 3 8332 TACH 11 07 0323 N22 UH8 11 5.5 B BXO 4 4 8352 RAW1 11 07 1530 N19 W21 11 5.5 B BXO 20 5 4 8352 RAW1 11 07 1530 N19 W28 11 5.5 B BXO 20 5 7 3 8352 RAW1 11 00 7 1530 N19 W28 11 5.5 B BXO 20 5 7 3 8352 RAW1 11 00 7 1500 N19 W28 11 5.5 B BXO 20 5 7 3 8352 RAW1 11 00 1315 N18 W40 11 5.5 B BXO 20 5 7 3 8351 RAW1 11 10 5 1550 N21 H20 11 7.1 B BXO 20 5 3 3 8381 VORO 11 05 2319 W22 E12 11 7.1 R B BXO 20 5 3 3 8381 LEAR 11 00 60150 N21 LE20 11 7.2	8375a	28865	MWIL	10	31	1500	N14	E53	11	4.6	4	(AP)					
8382 VORO 11 0.7 0.22 VIR 11 5.7 NAXX 31 5 2 8382 KAND 11 0.7 0.23 NI8 12 1 5.5 BXO 10 5 4 4 8382 KAND 11 0.7 0.23 NI8 12/2 11 5.5 BXO 10 5 4 4 8382 Z8872 HUL 11 0.7 1550 H19 12/2 11 5.5 B BXO 10 4 6 3 8382 Z8871 HUL 11 0.7 1550 H19 11 6.2 AX 1 3 8381 28871 HMUL 11 0.7 1750 S26 H15 11 7.1 8 EXO 20 5 3 3 8381 28871 MAUL 11 0.5 550 RU 17 1		28872					N18	W15	11	5.5	4	(AF)					
8382 TACH 11 07 03.6 N1 0.2 0																	3
8382 KAND 11 07 0750 N13 U24 11 5.5 N00 0 4 4 8382 Z8A72 MHL 11 07 1233 N18 U27 11 5.5 B BX00 10 5 4 4 8382 Z8A72 MUL 11 07 1253 N19 V28 11 5.5 B BX00 20 5 7 3 8382 LEAR 11 08 026 N11 1.5 5 B BX0 20 5 3 8381 Z8A71 MAH 11 05 1221 N22 E21 11 7.1 B BX0 20 5 3 3 8381 Z8A71 MHL 11 05 1221 N22 E21 11 7.1 B CAO 100 3 3 3 3 3 3 3 3																	3
8382 2887 RMMT 11 07 12.3 N18 U27 11 5.5 4 6 3 8382 28872 HULL 11 07 1550 M19 V28 11 5.5 4 B bR0 20 6 5 4 8382 LEAR 11 08 0208 11 15.5 B BX0 20 6 5 4 8382 LEAR 11 08 0208 11 15.5 B BX0 20 5 7 3 8381 28871 MULL 11 07 0750 S26 µ15 11 6.2 AX 1 3 8381 28871 HULL 11 05 125 12 11 7.1 4 B 8X0 20 5 3 3 3 3 3 3 3 3 3 3 3 3 3														8			
8382 28872 Hull 11 07 1530 M19 V28 11 5.5 B BX0 20 6 5 4 8382 LEAR 11 08 0028 N13												В		10			
8382 LEAR 11 0.6 0.262 N18 UA 11 5.5 B ERO 10 4 6 3 8382 RAMY 11 08 1315 N18 H40 11 5.5 B ERO 10 6 6 3 8381 RAMY 11 05 120 N22 E21 11 7.1 B BX0 5 4 3 8381 RAMY 11 05 1550 N21 E20 11 7.2 B BX0 20 5 3 3 8381 LEAR 11.06 0510 N22 E12 11 7.1 B CAO 302 2 3		28872							11	5.5	4				2	-	-
8382 RANY 11 08 1315 N18 W40 11 5.5 B EXC 10 10 5 6 3 8382 RANV 11 07 0750 S26 H15 11 6.2 AX 1 3 8381 28871 MHIL 11 05 1555 N21 E20 11 7.1 4 B BX0 20 5 3 3 8381 28871 MHIL 105 1555 N21 E20 11 7.1 B DX0 200 5 3															6	5	4
SizeA KAND II Or Dir Dir <thdir< th=""> Dir <thdir< th=""> <thdi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdi<></thdir<></thdir<>																	
RAW 10 5 22 11 7.1 8 BX0 5 4 3 8381 8381 WOR0 11 05 122 11 7.1 8 BX0 5 4 3 8381 WOR0 11 05 125 11 7.2 8 BX0 20 5 3 3 8381 WOR0 11 05 125 11 7.1 8 CA0 10 5 3 3 8381 KAM 11 06 010 N22 11 7.1 8 BX0 10 3 3 3 8381 KAM 11 06 1240 N22 12 17 7.2 4 8 N0 3												Б		20		1	
8381 28871 MULL 11 05 150 3 4 3 8381 MOLL 105 1550 N21 E20 11 7.1 4 B 5 3 3 8381 MOLL 105 1555 N21 E20 11 7.1 B CAO 10 5 3 3 8381 LEAR 11 06 0105 N21 E14 11 7.1 B CAO 10 5 3 <												p				,	
8381 HOLL 11 05 1555 N21 E20 11 7.2 F F BX0 20 5 3 3 8381 LEAR 11 05 2319 X24 E25 11 7.9 AXX 24 3 3 3 8381 LEAR 11 06 0105 N21 E14 11 7.1 B CAO 100 3 3 3 8381 LEAR 11 06 100 N21 E14 11 7.1 B BX0 10 3 <td>8381</td> <td>28871</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>PV0</td> <td></td> <td>2</td> <td>4</td> <td>3</td>	8381	28871									4		PV0		2	4	3
B381 VOR0 11 05 2319 N24 E25 11 7,9 AXX 24 3 3 B381 LEAR 11 06 010 10 5 3 3 B381 TACH 11 06 010 N22 1 7,1 B CAO 100 2 4 3 B381 KAND 11 06 080 N21 E14 11 7,1 B EAO 100 2 3 3 B381 RANU 11 06 1515 N21 E07 11 7,2 4 (B) 0 2 3 3 B381 LAR NUL 11 07 0323 N25 E08 11 7,1 B BXO 10 2 3 3 B381 LAR NAL 1107 0323 N22 W05 11 7,1 B BXO 10 2 4 3 B381 VORO 11 07 133 N2							N21	E20	11	7.2			вхо	20	5	3	3
													AXX	24	3		3
Date Name 11 06 06/04 N21 E10 11 7.1 BS0 22 4 3 8381 RAHY 11 06 114 N21 E06 11 7.0 B BX0 10 3 4 2 8381 28871 MVIL 11 06 151 N21 E07 11 7.2 B BX0 10 2 3 3 8381 28871 MVIL 11 07 035 N21 E02 11 7.2 B BX0 16 2 3 3 8381 XAMD 11 07 0750 N21 W02 11 7.1 B BX0 10 6 4 4 8381 Z8871 MULL 11 07 13 N22 W06 11 7.2 4 (B 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3<												В					3
8381 RAWY 11 06 1244 N21 E08 11 7.1 B BX0 10 3 4 2 8381 SVTO 11 06 1414 N21 E06 11 7.0 B BX0 10 3 4 2 8381 28871 MVII 11 06 1515 N21 E02 11 7.2 B BX0 10 2 3 3 8381 LEAR 11 07 033 N21 E02 11 7.2 B BX0 10 2 3 3 8381 KAND 11 07 033 N22 W05 11 7.2 BR0 6 2 4 2 8381 Z8871 MVIL 11 07 133 N22 W05 11 7.1 B BX0 20 5 4 4 8381 Z8871 MVIL 11 07 133 N22 W07 11 7.1 B BX0 10 2 3 3 3 3 3 3 3 3 3 3 3<														302			3
8381 SVTO 11 06 1414 N21 E06 11 7.0 B BXO 10 3 4 2 8381 28871 MVIL 11 06 151 N21 E02 11 7.2 4 (B<)	8381											в		10			2 7
0.36 285/1 WAIL 11 10 10 11 7.2 4 (B) 8381 LEAR 11 07 0323 N25 EOB 11 7.2 B BX0 16 2 3 3 8381 VORO 11 07 0323 N25 EOB 11 7.2 B BX0 16 2 3 3 8381 XAND 11 07 0530 N21 W02 11 7.2 BX0 4 5 3 8381 XAND 11 07 1230 N22 W06 11 7.2 4 (B) 0 4 4 3 8381 28871 MHIL 11 07 1330 N22 W06 11 7.2 4 (B) 1 3									11								
8381 VORO 11 07 0523 N25 E06 11 7.2 BX0 16 2 3 3 8381 TACH 11 07 070 N21 N72 BRO 6 2 4 2 8381 TACH 11 07 070 N21 N22 N25 BRO 6 2 4 2 8381 RANY 11 07 1230 N22 VOC 11 7.1 B BXO 10 6 4 4 8381 VORO 11 07 233 N22 VOC 11 7.1 B BXO 10 2 4 3 8381 HOLL 11 07 233 N22 VOR 11 7.2 A AX 10 2 4 3 8381 HOLL 11 08 135 N22 W17 11 7.2 A		28871									4						-
8381 TACH 11 07 0336 N18 E00 11 7.2 BR0 6 2 4 2 8381 KAND 11 07 0750 N21 W02 11 7.2 BX0 4 5 3 8381 RAMY 11 07 0750 N21 W02 11 7.2 BX0 4 5 3 8381 RAMY 11 07 1550 N22 W06 11 7.2 4 (B) 5 4 4 8381 HOLL 11 07 1550 N22 W06 11 7.2 A AX 18 4 3 8381 HOLL 11 08 028 N21 W17 11 7.2 A AX 10 2 4 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>В</td><td></td><td></td><td></td><td></td><td>3</td></t<>												В					3
8381 KAND 1 0.7 0.750 N2 W02 11 7.2 BX0 D 2 4 5 3 8381 RAMY 11 0.7 1233 N22 W05 11 7.1 B BX0 10 6 4 4 8381 RAMY 11 0.7 1550 N22 W06 11 7.1 B BX0 20 5 4 4 8381 HOLL 11 0.7 1550 N22 W07 11 7.1 B BX0 20 5 4 4 8381 LEAR 11 0.8 0.28 N21 H1 11 7.2 B BX0 10 2 3 3 8381 LEAR 11 0.8 0.28 N2 H1 11 7.2 B AX 10 3 1 3 8381 HOLL 11 0.2 1255 N22 E80 11 8.8 HAX 10.2 2 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></td<>																	3
8381 RAWY 11 07 1233 N22 W05 11 7.1 B BX0 10 6 4 4 8381 28871 MVIL 11 07 1530 N22 W06 11 7.2 4 (B) N N N 18 4 3 8381 HOLL 11 07 2334 N21 V12 11 7.1 B BX0 10 2 4 3 8381 LEAR 11 08 1315 N22 W17 11 7.2 A AXX 10 3 1 3 8381 RAMY 11 08 1315 N22 W17 11 7.2 A AXX 10 3 1 3 8381 RAMY 11 02 1554 N22 E86 11 8.8 HAX 102 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td></td> <td>0</td> <td></td> <td></td> <td>2</td>														0			2
8381 288/1 MULL 11 07 1530 N22 W06 11 7.2 4 (B) 8381 HOLL 11 07 1530 N22 W07 11 7.1 B BX0 20 5 4 3 8381 LEAR 11 07 2334 N21 W11 11 7.1 AXX 18 4 3 8381 LEAR 11 08 028 N21 W11 11 7.2 A AXX 18 4 3 8381 RAMY 11 08 1512 N22 W17 11 7.2 A AXX 102 1 2 8377 SUTO 11 02 1255 N22 E86 11 8.8 HAX 102 1 2 3 8377 KAND 11 02 1525 N22 E78 11 8.6 A AXX 50 1 1 3 8377 VORO 11 02 1555 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.1</td> <td></td> <td>в</td> <td></td> <td>10</td> <td></td> <td></td> <td></td>										7.1		в		10			
8381 VOR0 11 07 233 N21 W12 11 7.1 D DN0 20 3 4 3 8381 LEAR 11 08 0028 N21 W11 11 7.2 B BX0 10 2 4 3 8381 RAWY 11 08 0028 N21 W11 17.2 A AX 10 2 4 3 8381 RAWY 11 08 1515 N22 W19 11 7.2 A AX 10 3 1 3 8377 SVTO 11 02 0545 N22 E78 11 8.8 A HS 30 2 2 3 8377 KAND 11 02 1525 N22 E76 11 8.6 A AX 50 1 1 3 8377 VORO 11 02 1255 N22 E76 11 8.8 HX 22 3 8377 LEA		28871									4	(B)				•	•
8381 LEAR 11 08 0028 N21 W11 11 7.2 B BX0 10 2 4 3 8381 RAMY 11 08 1315 N22 W17 11 7.2 A AX 10 3 1 3 8381 HOLL 11 08 1512 N22 W17 11 7.2 A AX 10 3 1 3 3 8377 VOR0 11 02 0545 N22 E86 11 8.8 HAX 102 1 2 3 3 3 8377 SVT0 11 02 1255 N22 E78 11 8.6 A HAX 50 1 1 3 2 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>В</td><td></td><td></td><td></td><td>4</td><td></td></td<>												В				4	
8381 RAHY 11 0.8 1315 N22 W17 11 7.2 A AX 10 3 1 3 8381 HOLL 11 0.8 1512 N22 W19 11 7.2 B CSO 20 3 3 3 8377 SVT0 11 0.2 0545 N22 E86 11 8.8 A HS 300 2 2 3 3 3 8377 SVT0 11 0.2 1245 N21 E82 11 8.8 A HS 300 2 2 3 8377 SVT0 11 0.2 1245 N21 E83 11 8.6 A AX 50 1 1 3												Ð				,	3
8381 HOLL 11 08 1512 N22 W19 11 7.2 B CSO 20 3 3 3 8377 VOR0 11 02 0545 N22 E86 11 8.8 HAX 102 1 2 2 3 3 3 3 8377 SVT0 11 02 1255 N22 E83 11 8.9 HA 102 1 2 3 8377 KAND 11 02 1500 N22 E78 11 8.6 4 (AP) 1 2 3 3 2 3 </td <td></td> <td>3 7</td>																	3 7
8377SVT0111021215N22E83118.6NN	8381		HOLL	11 (08	1512	N22	₩19									3
0317 SV10 11 02 1215 N21 E82 11 8.8 A HS 30 2 2 3 8377 KAND 11 02 1245 N21 E83 11 8.9 HA 1 2 3 8377 28866 MWIL 11 02 1255 N22 E78 11 8.6 4 AX 50 1 1 3 8377 VORO 11 02 2316 N22 E76 11 8.6 A AX 50 1 1 2 8377 LEAR 11 03 0416 N22 E74 11 8.6 A HAX 224 1 2 3 8377 LEAR 11 03 0416 N22 E74 11 8.9 B CSO 140 3 4 3 8377 KAND 11 03 0725 N22 E71 18 8.8 B CAO 90 4 4 4<													НАХ	102	1		2
8377 28866 MWIL 11 02 1500 N22 E78 11 8.6 4 (AP) 8377 HOLL 11 02 1525 N22 E78 11 8.6 4 AX 50 1 1 3 8377 HOLL 11 02 2316 N22 E78 11 8.6 A AX 50 1 1 3 8377 LEAR 11 03 0030 N21 E73 11 8.6 A HAX 224 1 2 3 8377 LEAR 11 03 00710 N21 E73 11 8.9 B CSO 140 3 4 3 8377 SUTO 11 03 0725 N22 E71 11 8.8 B CAO 90 4 3 4 3 8377 KAND 11 03 0725 N22 E60 11 8.7 4 (B) 3 4 3 4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Α</td><td></td><td>30</td><td></td><td></td><td>3</td></td<>												Α		30			3
8377 HOLL 11 02 1525 N22 E78 11 8.6 A AX 50 1 1 3 8377 VOR0 11 02 2316 N22 E76 11 8.8 HAX 224 1 2 8377 LEAR 11 03 0030 N21 E73 11 8.6 A HA 60 2 2 3 8377 LEAR 11 03 0416 N22 E74 11 8.9 HSX 50 1 3 2 3 8377 TACH 11 03 0710 N21 E73 11 8.9 HSX 50 1 3 2 3 8377 KAND 11 03 1213 N22 E77 11 8.8 B CAO 90 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 4 4 4 4 4		28866									1	(40)	HA		1	2	3
8377 VOR0 11 02 2316 N22 E76 11 8.8 HAX 224 1 2 8377 LEAR 11 03 0030 N21 E73 11 8.6 A HA 60 2 2 3 8377 TACH 11 03 0416 N22 E74 11 8.9 HSX 50 1 3 2 8377 TACH 11 03 0710 N21 E73 11 8.9 HSX 50 1 3 2 8377 SVT0 11 03 0710 N21 E73 11 8.9 B CSO 140 3 4 3 8377 KAND 11 03 0715 N22 E67 11 8.8 B CAO 90 4 3 4 8377 LEAR 11 04 0342 N22 E60 11 8.7 B CAO 50 6 4 4 4 8 5<											4		AX	50	1	1	7
8377 LEAR 11 03 0030 N21 E73 11 8.6 A HA 60 2 2 3 8377 TACH 11 03 0416 N22 E74 11 8.9 HSX 50 1 3 2 8377 SVTO 11 03 0710 N21 E73 11 8.9 B CSO 140 3 4 3 8377 SVTO 11 03 0725 N22 E71 11 8.8 HS 1 2 3 8377 RAMY 11 03 1213 N22 E69 11 8.8 HS 1 2 3 8377 HOLL 11 03 155 N21 E66 11 8.7 4 (B) 90 4 3 4 8377 LEAR 11 04 0040 N22 E60 11 8.8 B CAO 50 6 5 3 4 8377 TAC				11 (02	2316										I	
3377 $1ALH$ 11 0.5 0.416 $N.22$ $E/4$ 11 8.9 HSX 50 1 3 2 8377 $SVT0$ 11 0.3 0710 $N21$ $E73$ 11 8.9 B CSO 140 3 4 3 8377 $KAND$ 11 0.3 0725 $N22$ $E71$ 11 8.9 B CSO 140 3 4 3 8377 $RAMY$ 11 0.3 0725 $N22$ $E71$ 11 8.8 B CAO 90 4 3 4 8377 $RAMY$ 11 0.3 1515 $N21$ $E66$ 11 8.7 4 (B) 8377 $HOLL$ 11 0.3 1520 $N22$ $E68$ 11 8.9 B CSO 170 4 4 8377 $HOLL$ 11 0.4 040 $N21$ $E61$ 11 8.7 B CAO 50 6 5 8377 $VORO$ 11 04 0322 $E57$ 11 8.8 HAX 1100 7 3 3 8377 $RAMY$ 11 04 030 $N22$ $E57$ 11 8.8 CAO 100 7 3 3 8377 $RAMY$ 11 04 030 $N22$ $E57$ 11 8.8 CAO 100 7 3 3 8377 $RAMY$ 11 04 <td></td> <td>Α</td> <td></td> <td></td> <td></td> <td>2</td> <td>3</td>												Α				2	3
8377 KAND 11 03 0725 N22 E71 11 8.8 HS 1 2 3 8377 RAMY 11 03 0725 N22 E71 11 8.8 HS 1 2 3 8377 RAMY 11 03 1213 N22 E69 11 8.8 B CAO 90 4 3 4 8377 RAMY 11 03 1515 N21 E66 11 8.7 4 (B) 90 4 4 4 8377 HOLL 11 03 1520 N22 E68 11 8.7 B CAO 50 6 5 4 8377 LEAR 11 04 032 N22 E60 11 8.8 HAX 117 2 3 8377 TACH 11 04 0512 N23 E60 11 8.8 CAO 5 3 4 8377 KAND 11 04 0512 N22 E55 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>2</td>												-					2
8377 RAMY 11 03 1213 N22 E69 11 8.8 B CAO 90 4 3 4 8377 28866 MWIL 11 03 1515 N21 E66 11 8.7 4 B 3 4 8377 28866 MWIL 11 03 1515 N21 E66 11 8.7 4 B 3 4 8377 LEAR 11 04 0400 N21 E61 11 8.7 B CAO 50 6 5 4 8377 LEAR 11 04 0400 N22 E60 11 8.8 HAX 1177 2 3 8377 VORO 11 04 0512 N22 E55 11 8.8 CAO 5 3 4 8377 KAND 11 04 0930 N22 E55 11 8.7 BAO 100 7 3 3 8377 RAMY 11 04												В		140			
8377 28866 MWIL 11 03 1515 N21 E66 11 8.7 4 (B) 0 0 0 4 4 4 8377 HOLL 11 03 1520 N22 E68 11 8.9 B CSO 170 4 4 4 8377 LEAR 11 04 0400 N21 E61 11 8.7 B CAO 50 6 5 4 8377 VORO 11 04 0342 N22 E60 11 8.8 HAX 117 2 3 8377 TACH 11 04 0512 N23 E60 11 8.8 HAX 1177 2 3 8377 KAND 11 04 0512 N22 E55 11 8.7 B DAO 100 7 3 3 8377 RAMY 11 04 1218 N22 E55 11 8.7 A HA 140 4 2	8377											в		QÛ			
8377 LEAR 11 04 0040 N21 E61 11 8.7 B CAO 50 6 5 4 <td></td> <td>28866</td> <td></td> <td></td> <td></td> <td></td> <td>N21</td> <td>E66</td> <td></td> <td></td> <td>4</td> <td></td> <td>0.10</td> <td>,,,</td> <td>-</td> <td>5</td> <td>4</td>		28866					N21	E66			4		0.10	,,,	-	5	4
8377 VOR0 11 04 0342 N22 E60 11 8.8 HAX 117 2 3 8377 TACH 11 04 0512 N23 E60 11 8.8 HAX 117 2 3 8377 TACH 11 04 0512 N23 E60 11 8.8 HH 50 2 2 3 8377 TACH 11 04 0930 N22 E57 11 8.8 HH 50 2 2 3 8377 RAMY 11 04 0930 N22 E55 11 8.7 B DAO 100 7 3 3 8377 RAMY 11 04 1500 N22 E53 11 8.7 A HA 140 4 2 3 8377 HOLL 11 04 1530 N22 E52 11 9.0 HAX 208 3 3 8377 LEAR 11 05 035															4	4	4
8377 TACH 11 04 0512 N23 E60 11 8.8 HH 50 2 2 3 8377 KAND 11 04 0930 N22 E57 11 8.8 HH 50 2 2 3 8377 KAND 11 04 0930 N22 E57 11 8.8 HH 50 2 2 3 8377 RAMY 11 04 0930 N22 E55 11 8.7 B DAO 100 7 3 3 8377 28866 MWIL 11 04 1500 N22 E53 11 8.7 A HA 140 4 2 3 8377 HOLL 11 04 1530 N22 E52 11 9.0 HAX 208 3 3 8377 HOLL 11 04 2312 N23 E52 11 9.0 HAX 208 3 3 8377 LEAR 11												В				5	
8377 KAND 11 04 0930 N22 E57 11 8.8 CAO 5 3 4 8377 RAMY 11 04 1218 N22 E55 11 8.7 B DAO 100 7 3 3 8377 RAMY 11 04 1218 N22 E55 11 8.7 B DAO 100 7 3 3 8377 28866 MWIL 11 04 1500 N22 E53 11 8.7 A HA 140 4 2 3 8377 HOLL 11 04 1530 N22 E53 11 8.7 A HA 140 4 2 3 8377 HOLL 11 04 2312 N23 E52 11 9.0 HAX 208 3 3 8377 LEAR 11 05 035 N21 E49 11 8.8 CAO 110 8 5 4 8377																~	
8377 RAMY 11 04 1218 N22 E55 11 8.7 B DAO 100 7 3 3 8377 28866 MWIL 11 04 1500 N22 E54 11 8.8 5 (BP) 8377 HOLL 11 04 1500 N22 E53 11 8.7 A HA 140 4 2 3 8377 HOLL 11 04 1530 N22 E53 11 8.7 A HA 140 4 2 3 8377 VORO 11 04 2312 N23 E52 11 9.0 HAX 208 3 3 8377 LEAR 11 05 035 N21 E49 11 8.8 B CAO 100 6 4 3 8377 KAND 11 05 0820 N21 E44 11 8.7 A HA 170 4 3 3 8377 KAND	8377													50			
8377 28866 MWIL 11 0.4 1500 N22 E54 11 8.8 5 (BP) 8377 HOLL 11 0.4 1530 N22 E53 11 8.7 A HA 140 4 2 3 8377 HOLL 11 0.4 1530 N22 E53 11 8.7 A HA 140 4 2 3 8377 VORO 11 0.4 2312 N23 E52 11 9.0 HAX 208 3 3 8377 LEAR 11 05 035 N21 E49 11 8.8 B CAO 10 8 5 4 8377 KAND 11 05 035 N21 E42 11 8.7 A HA 170 4 3 3 8377 KAND 11 05 1221 N22 E42 11 8.7 A HA 170 4 3 3 8377 KAMY IL<	8377											в		100			
8377 VORO 11 04 2312 N23 E52 11 9.0 HAX 208 3 3 8377 LEAR 11 05 0035 N21 E49 11 8.8 B CAO 110 8 5 4 8377 LEAR 11 05 0820 N21 E49 11 8.7 CAO 110 8 5 4 8377 KAND 11 05 0820 N21 E44 11 8.7 CAO 6 4 3 8377 RAMY 11 05 1221 N22 E42 11 8.7 A HA 170 4 3 3 8377 28866 MWIL 11 05 1555 N21 E40 11 8.7 5 (BP) 8377 HOLL 11 05 1555 N21 E40 11 8.7 B CAO 30 3 2 3 8377 VORO 11 05 2319		28866								8.8	5				-	-	-
8377 LEAR 11 05 0035 N21 E49 11 8.8 B CAO 110 8 5 4 8377 KAND 11 05 0820 N21 E44 11 8.7 CAO 6 4 3 8377 RAMY 11 05 1221 N22 E42 11 8.7 A HA 170 4 3 3 8377 RAMY 11 05 1500 N21 E40 11 8.7 G HA 170 4 3 3 8377 HOLL 11 05 1555 N21 E40 11 8.7 G 30 3 2 3 8377 HOLL 11 05 2319 N22 E37 11 8.8 HAX 237 2 3 8377 VORO 11 05 2319 N22 E37 11 8.8 HAX 237 2 3												А				2	
8377 KAND 11 05 0820 N21 E44 11 8.7 CAO 10 6 4 3 8377 RAMY 11 05 1221 N22 E42 11 8.7 CAO 6 4 3 8377 RAMY 11 05 1221 N22 E42 11 8.7 A HA 170 4 3 3 8377 28866 MWIL 11 05 1555 N21 E40 11 8.7 5 (BP) 8377 HOLL 11 05 1555 N21 E40 11 8.7 B CAO 30 3 2 3 8377 VORO 11 05 2319 N22 E37 11 8.8 HAX 237 2 3 8377 VORO 11 05 2319 N22 E37 11 8.8 HAX 237 2 3																_	
8377 RAMY 11 05 1221 N22 E42 11 8.7 A HA 170 4 3 3 8377 28866 MWIL 11 05 1500 N21 E40 11 8.7 5 (BP) 8377 HOLL 11 05 1555 N21 E40 11 8.7 5 (BP) 8377 HOLL 11 05 1555 N21 E40 11 8.7 B CAO 30 3 2 3 8377 VORO 11 05 2319 N22 E37 11 8.8 HAX 237 2 3	8377											в		110			
8377 28866 MWIL 11 05 1500 N21 E40 11 8.7 5 (BP) 8377 HOLL 11 05 1555 N21 E40 11 8.7 5 (BP) 8377 HOLL 11 05 1555 N21 E40 11 8.7 B CAO 30 3 2 3 8377 VORO 11 05 2319 N22 E37 11 8.8 HAX 237 2 3	8377			11 0)5							А		170			े र
8377 VORO 11 05 2319 N22 E37 11 8.8 HAX 237 2 3	8377	28866)5	1500	N21 E	E40	11	8.7	5				٠	2	-
8377 VORU 11 05 2519 N22 E37 11 8.8 HAX 237 2 3												В				2	3
120 8 4 3												р					3
		····					ML1 (ŧ I	0.0		<u>ل</u> ا	LAU	120	8	4	5

SUNSPOT GROUPS (Ordered by Central Meridian Passage Date)

NOAA/ USAF Group	Mt Wilson Group	Sta	Observation Time Mo Day (UT)	Lat CMD	CMP Mo Day	Max H	Mag Class	Spot Class	Corrected Area (10-6 Hemi)	Spot Count	Long. Extent (Deg)	Qua
8377	-	ТАСН	11 06 0510	N22 E32	11 8.7			HSX	120	1	2	3
8377		KAND	11 06 0840	N22 E30	11 8.7			HS	120	3	3	3
8377		RAMY	11 06 1244	N22 E29	11 8.7		в	CAO	150	8	5	3
8377		SVTO	11 06 1414	N22 E29	11 8.8		B	CAO	200	4	5	2
8377	28866	MWIL	11 06 1515	N22 E27	11 8.7	5	(BG)					
3377		LEAR	11 07 0013	N21 E22	11 8.7		В	CAO	110	5	4	3
3377		VORO	11 07 0323	N22 E21	11 8.7			HKX	230	3		3
8377		TACH	11 07 0436	N26 E19	11 8.7			ннх	330	3	3	3 3 2 3
8377		KAND	11 07 0750	N22 E18	11 8.7		_	СКО		7	5	
8377		RAMY	11 07 1233	N23 E15	11 8.7	-	В	CAO	170	7	3	4
8377	28866	MWIL	11 07 1530	N22 E14	11 8.7	5	(BP)	000	140	5	5	,
8377		HOLL	11 07 1550 11 07 2334	N23 E15	11 8.8 11 8.7		В	CSO HKX	160 274	5	2	4
8377 8377		VORO LEAR	11 07 2334 11 08 0028	N22 E10 N22 E12	11 8.9		в	CAO	120	13	8	7
8377		TACH	11 08 0500	N22 E06	11 8.7		Б	HSX	300	2	3	3 3 4
8377		RAMY	11 08 1315	N23 E05	11 8.9		в	CSO	190	20	8	3
8377		HOLL	11 08 1512	N23 E03	11 8.9		В	CSO	160	6	7	3 3 3
8377		VORO	11 08 2300	N22 W03	11 8.7		-	НКХ	239	3	-	3
8377		LEAR	11 09 0032	N23 W02	11 8.9		В	CAO	80	10	8	4
8377		TACH	11 09 0530	N22 W03	11 9.0			CAO	255	4	6	5 3 3
8377		SVTO	11 09 0740	N23 W06	11 8.8		В	CAO	200	16	8	3
8377		KAND	11 09 0800	N22 W08	11 8.7			CAO		4	4	
3377		RAMY	11 09 1315	N21 W13	11 8.5		В	CAO	120	3	3	1
3377	28866	MWIL	11 09 1530	N21 W12	11 8.7	5	(AP)				,	
B377		HOLL	11 09 1655	N22 W12	11 8.8		A	HH	110	3	4	1
8377		VORO	11 09 2259	N22 W17	11 8.6		~	HAX	86	1	F	3 3 3
8377		LEAR	11 10 0112 11 10 0539	N23 W17 N22 W20	11 8.7		8		100 304	9 6	5 3	2
3377 3377		TACH Ramy	11 10 0539 11 10 1443	N22 W20 N21 W26	11 8.7 11 8.6		В	HHX CSO	110	7	4	3
B377	28866	MWIL	11 10 1515	N21 W20	11 8.8	5	(BP)	030	110	,	4	5
3377	20000	HOLL	11 10 1705	N22 W25	11 8.8	-	B	CSO	100	10	6	4
8377		VORO	11 10 2359	N22 W29	11 8.8		-	HAX	181	2	•	3
8377		KAND	11 11 1005	N22 W36	11 8.6			CSO		4	3	3 4
B377		RAMY	11 11 1322	N22 W37	11 8.7		В	CAO	110	5	4	3
8377	,	HOLL	11 11 1508	N22 W38	11 8.7		В	CSO	100	4	3	3 3 3 4
8377		VORO	11 11 2318	N22 W43	11 8.7			HAX	134	1		- 3
8377	~	LEAR	11 12 0023	N22 W42	11 8.8		B	CSO	110	5	4	
8377		KAND	11 12 0820	N22 W48	11 8.6			CAO		3	5	4
8377		SVTO	11 12 1125	N22 W49	11 8.7		A	HS	100	1	2	1
8377	28866	MWIL	11 12 1530	N22 W52	11 8.6	4	(AP)		70			-7
3377		LEAR	11 13 0020	N23 W55	11 8.8		А	HS	70	1 1	1 2	3
8377	200//	KAND	11 13 0720	N22 W60	11 8.7	4	(40)	HS		1	4	3
8377 8377	28866	MWIL	11 13 1515 11 13 1549	N22 W64 N22 W65	11 8.7 11 8.7	4	(AP)	HA	30	1	2	4
B377		HOLL RAMY	11 13 1900	N22 W65 N21 W67	11 8.6		A A	HS	70	1	2	2
3377 3377		LEAR	11 14 0020	N23 W69	11 8.7		A	HS	60	1	1	3
8377		RAMY	11 14 1345	N22 W79	11 8.5		Â	HS	30	1	2	4
8377		HOLL	11 14 1515	N21 W73	11 9.0		В	DSO	240	3	8	4
3377	28866	MWIL	11 14 1530	N22 W77	11 8.7	4	(AP)					
3377		LEAR	11 15 0022	N22 W80	11 8.9		A	AX		1		3
8380	20070	VORO	11 04 03 42 11 04 1500	S21 E67	11 9.3	,	(40)	AXX	28	1		3
8380 8380	28870	MWIL	11 04 1500 11 05 0035	S21 E69 S22 E62	11 9.9 11 9.8	4	(AP)	AX	10	1	1	4
8380		LEAR KAND	11 05 0820	S22 E02 S21 E60	11 9.8		A	AX	10	1	1	3
8380		RAMY	11 05 1221	S21 E57	11 9.9		А	AX		1		ž
8380	28870	MWIL	11 05 1500	\$21 E56	11 9.9	4	(AP)					-
8380	20010	HOLL	11 05 1555	S20 E55	11 9.9		A	AX	10	1	1	3
8380		VORO	11 05 2319	S20 E52	11 9.9			AXX	16	1		- 3
8380		LEAR	11 06 0105	S22 E49	11 9.8		Α	AX		1		3333333
8380		TACH	11 06 0510	S21 E48	11 9.9			AXX	3	1	1	3
8380		KAND	11 06 0840	\$22 E44	11 9.7			AX		1	1	3
8380		RAMY	11 06 1244	S21 E44	11 9 9		Α	AX		1		3
8380	28870	MWIL	11 06 1515	\$21 E43	11 9.9	3	(AP)			~		
8380		VORO	11 07 0323	S21 E29	11 9.4			AXX	17	2		3 2
8380		TACH	11 07 0436	S20 E41	11 10.3			AXX	2	1	1	2
8380		KAND	11 07 0750	S22 E38	11 10.2		-	BXO	40	4	3	3
8380		RAMY	11 07 1233	S21 E36	11 10.3		B	BXO	10	7	3	4
8380	28870	M₩IL	11 07 1530	S22 E34	11 10.2	- 4	(B)					

NOAA/ USAF	Mt Wilson Group				ation/ Time	1-1-0/2		CMP	Max	Mag	Spot	Corrected Area	Spot	Long. Extent	
Group 8380	Group	Sta			/ (UT)	Lat CMD		Day	H		Class	(10-6 Hemi)	Count	(Deg)	Qua
		HOLL		07	1550	\$22 E34		1 10.3		A	AX	10	3	2	4
8378 8378	28865	RAMY MWIL	11 11	03 03	1213 1515	N14 E82 N14 E80	11 11		5	A (AP)	HA	50	1	4	4
8378		HOLL		03	1520	N14 E78	11		5	A	HS	120	1	2	4
8378		LEAR	11		0040	N13 E75	11			Â	HA	60	1	3	4
8378		VORO	11		0342	N14 E76	11				HAX	228	1		3
8378		TACH		04	0512	N15 E76		10.0			HSX	60	1	2	3 4
8378 8378		KAND Ramy	11	04 04	0930 1218	N14 E72 N14 E68	11				HS	470	1	3	4
8378	28868	MWIL	11		1500	N14 E67	11 11		5	A (AP)	HA	170	4	2	3
8378		HOLL		04	1530	N14 E67	11		Ç	A	HS	140	1	2	3
8378		VORO		04	2312	N15 E66		10.0		1	HAX	192	1	2	3
8378		LEÁR		05	0035	N13 E62	11			Α	HS	120	1	2	4
8378		KAND	11		0820	N14 E59	11	9.8			HA		1	2	3
8378		RAMY		05	1221	N14 E56	11			А	HS	100	1	2	3
8378 8378	28868	MWIL		05	1500	N14 E54	11		5	(AP)					
8378		HOLL VORO		05 05	1555 2319	N14 E53	11			A	HS	30	1	2	3
8378		LEAR		06	0105	N14 E50 N13 E48	11 11				HHX	226	1	~	3
8378		TACH		06	0510	N14 E46	11			A	HS AR	120 8	1 3	2	3 3 3
8378		KAND		06	0840	N14 E44	11				HS	0	1	2 2	ר ד
8378		RAMY	11	06	1244	N14 E43	11			в	cso	130	2	5	3
8378		SVTO	11	06	1414	N13 E41	11			Ā	HS	140	1	2	2
8378	28868	MWIL		06	1515	N14 E41	11	9.7	5	(BP)				_	-
8378		LEAR		07	0013	N13 E35	11			Α	HS	90	1	2	3
8378 8378		VORO		07	0323	N14 E35	11				ннх	195	1		3
8378		TACH Kand		07 07	0436 0750	N14 E33 N13 E31	11				HSX	200	1	3	2
8378		RAMY	11		1233	N15 E29	11 11			٨	HA HS	140	1	2	3
8378	28868	MWIL	11		1530	N14 E28	11		5	A (AP)	ns	160	2	3	4
8378		HOLL	11	07	1550	N13 E28	11	9.8	2	A	HS	140	2	3	4
8378		VORO	11	07	2334	N14 E23	11	9.7		••	ннх	249	2	2	3
8378		LEAR	11		0028	N13 E22	11	9.7		А	HS	110	6	3	3
8378		TACH	11		0500	N14 E19	11	9.6			HSX	200	1	3	3 4
8378		RAMY	11		1315	N15 E16	11	9.8		A	HS	160	3	4	3 3
8378 8378		holl Voro	11 11		1512 2300	N15 E12	11	9.5		В	CSO	140	2	4	3
8378		LEAR	11		0032	N14 E11 N14 E09	11 11	9.8 9.7		٨	HHX	187	1	-	3
8378		TACH	11		0530	N14 E07	11	9.7		A	HS HSX	150 400	1 1	3 3	4 5
8378		SVTO	11		0740	N14 E05	11	9.7		А	HS	200	1	3	3
8378		KAND	11	09	0800	N14 E06	11	9.8			HA		1	ž	3
8378		RAMY	11		1315	N14 E00	11	9.5		А	HS	150	1	2	1
8378	28868	MWIL	11		1530	N13 E01	11	9.7	5	(AP)					
8378 8378		HOLL	11		1655	N13 E02	11	9.8		Α	HH	150	1	3	1
8378		VORO	11		2259	N14 W03	11			-	HAX	122	1		3
8378		LEAR Tach	11 11		0112 0539	N14 W04 N13 W07	11 11	9.7		A	HS	130	1	3	3
8378		RAMY	11		1443	N13 W12	11	9.7 9.7		٨	HHX	450	1	3	3
8378	28868	MWIL	11		1515	N14 W12	11	9.7	5	A (AP)	HS	170	1	2	3
8378		HOLL	11		1705	N14 W12	11	9.8	-	A	HS	90	1	2	4
8378		KAND	11	11	1005	N14 W23	11	9.7		••	CÃO		2	4	4
8378		RAMY	11		1322	N14 W25	11	9.7		в	CSO	150	2	3	3
8378		HOLL	11		1508	N15 W22	11	10.0		В	CSO	130	3	9	3
8378		VORO	11		2318	N14 W26	11	10.0		_	HAX	163	1		3
8378 8378		LEAR Kand	11 11		0023 0820	N14 W30	11	9.7		A	HS	120	1	3	4
8378		SVTO	11		1125	N15 W34 N15 W37	11 11	9.8			HA	110	1	2	4
8378	28868	MWIL	11		1530	N15 W38	11	9.7 9.8	4	A (AP)	HS	110	1	2	1
8378		VORO	11		2359	N14 W46	11	9.5	-1	(AF)	НАХ	150	1		3
8378		LEAR	11		0020	N16 W42	11	9.8		А	HS	140	1	2	3
8378		KAND	11	13	0720	N15 W47	11	9.7			HS		1	2	3
8378	28868	MWIL	11		1515	N15 W51	11	9.8	5	(AP)				-	-
8378		HOLL	11		1549	N14 W52	11	9.7		A	HS	110	1	2	4
8378		RAMY	11		1900	N14 W53	11	9.8		A	HS	90	1	2	2
8378 8378			11		0020	N16 W56	11	9.8		A	HS	70	2	2	3
8378 8378		TACH Ramy	11 11		0426 1345	N15 W59	11	9.7			HSX	150	1	2	3
8378		HOLL	11		1545	N15 W65 N13 W64	11 11	9.6 9.8		A	HS	110	1	2	4
			••		1 af 1 af	AL2 NO4	11	7.0		Α	HS	180	1	2	4

SUNSPOT GROUPS (Ordered by Central Meridian Passage Date)

NOAA/ USAF	Mt Wilson	<u></u>	0bserv	Time		CMP	Max	Mag	Spot	Corrected Area	Spot	Long. Extent	
Group	Group	Sta	Mo Day	(01)	Lat CMD	Mo Day	H	Class	Class	(10-6 Hemi)	Count	(Deg)	Qual
8378 8378	28868	MWIL	11 14 11 15	1530 0022	N15 W64 N15 W68	11 9.8 11 9.9	5	(AP)	HS	50	1	2	3
8378		LEAR Voro	11 15	0022	N13 W88 N14 W72	11 9.9		A	HAX	288	3	2	2
8378		TACH	11 15	0452	N15 W73	11 9.7			HSX	50	1	2	4
8378	28868	MWIL	11 15	1530	N15 W77	11 9.8	4	(AP)					
8385		KAND	11 11	1005	N19 W24	11 9.6			вхо		2	3	4
8385		RAMY	11 11	1322	N19 W25	11 9.6		В	BXO	40	6	4	3
8385 8385		HOLL LEAR	11 11 11 12	1508 0023	N19 W27 N19 W32	11 9.6 11 9.6		B B	BXO BXO	10 10	6 8	5 7	3 4
8385		KAND	11 12	0820	N20 W36	11 9.6			BXO		10	6	4
8385 8385	28876	SVTO	11 12 11 12	1125 1530	N19 W39 N20 W40	11 9.5 11 9.6	3	В (В)	CAO	30	6	5	1
8385	20070	MWIL LEAR	11 13	0020	N20 W40	11 9.0	5	B	DSO	50	15	9	3
8385		KAND	11 13	0720	N20 W49	11 9.5			CSO		7	9	3
8385 8385	28876	MWIL HOLL	11 13 11 13	1515 1549	N20 W53 N19 W56	11 9.6 11 9.4	4	(BG) B	ESO	150	14	12	4
8385		RAMY	11 13	1900	N20 W56	11 9.5		B	DAO	50	10	10	2
8385		VORO	11 13	2310	N20 W61	11 9.3			DAI	270	9	15	2
8385 8385		LEAR TACH	11 14 11 14	0020 0426	N22 W58 N22 W63	11 9.5 11 9.3		В	DSO DAO	110 140	7 3	10 20	3 3
8385		RAMY	11 14	1345	N19 W65	11 9.6		В	EAO	140	8	13	4
8385 8385	28876	HOLL	11 14 11 14	1515 1530	N21 W62	11 9.9 11 9.7	4	B	DAO	80	3	5	4
8385	20010	MWIL LEAR	11 15	0022	N21 W65 N21 W69	11 9.7	4	(B) B	ESO	90	3	12	3
8385		VORO	11 15	0025	N21 W70	11 9.6			HAX	127	1		2
8385 8385	28876	TACH MWIL	11 15 11 15	0452 1530	N21 W72 N22 W75	11 9.7 11 9.9	4	(AF)	HSX	100	3	2	4
8385	20010	TACH	11 16	0535	N23 W81	11 10.0	4	(Ar)	HRX	20	1	1	4
8385A 8385A		RAMY HOLL	11 04 11 04	1218 1530	S21 E71 S20 E68	11 9.9 11 9.8		A A	AX AX	20	1 1	1	3 3
8385B		SVTO	11 03	0710	N24 E89	11 10.2		A	A	90	1	4	3
8385c	28875	MWIL	11 10	1515	N16 W00	11 10.6	4	(AP)					
8385C		KAND	11 11	1005	N16 W14	11 10.3			AX		2	1	4
8385C		RAMY	11 11	1322	N16 W16	11 10.3		A	AX		1		3
8383A	28880	MWIL	11 15	1530	s19 W34	11 13.0	4	(B)					
8383A		TACH	11 16	0535	S19 W43	11 12.9			AXX	5	1	1	4
8383A 8383A	28880	KAND MWIL	11 16 11 16	1250 1530	S20 W45 S20 W47	11 13.1 11 13.0	4	(B)	BXO		5	6	3
8383C	28882	MWIL	11 17	1530	N19 W42	11 14.4	3	(B)					
8383		RAMY	11 08	1315	S13 E80	11 14.6		A	BR	50	1	5	3
8383 8383		HOLL VORO	11 08 11 08	1512 2300	S14 E80 S14 E75	11 14.7 11 14.6		A	HS Hax	30 101	1 1	2	3 3
8383		LEAR	11 09	0032	S14 E75	11 14.0		В	CAO	30	4	4	4
8383		TACH	11 09	0530	S17 E75	11 14.9			HSX	50	1	1	5
8383 8383		SVTO Kand	11 09 11 09	0740 0800	S15 E72 S14 E72	11 14.8 11 14.8		В	DSO CAO	200	5 5	5 5	3 3
8383		RAMY	11 09	1315	\$13 E67	11 14.6		B	CSO	40	5	3	1
8383	28873	MWIL	11 09	1530	S14 E65	11 14.5	4	(AP)		F 0		-	
8383 8383		HOLL VORO	11 09 11 09	1655 2259	S16 E64 S14 E61	11 14.5 11 14.6		A	HS Hax	50 87	1 1	2	1 3
8383		LEAR	11 10	0112	S15 E61	11 14.7		В	CSO	80	3	3	3
8383 8383		TACH Ramy	11 10 11 10	0539 1443	S14 E58 S13 E59	11 14.6 11 15.1		В	HSX CSO	107 60	3 8	2 13	3 3
8383	28873	MWIL	11 10	1515	S13 E53	11 14.6	4	(BP)	630	00	0		
8383		HOLL	11 10	1705	S16 E56	11 14.9		В	CRO	60	10	12	4
8383 8383		voro Kand	11 10 11 11	2359 1005	S13 E50 S15 E46	11 14.8 11 14.9			HAX Cao	75	2 7	11	3 4
8383		RAMY	11 11	1322	S15 E45	11 15.0		В	CSO	60	14	10	
8383		HOLL	11 11	1508	S15 E44	11 15.0		В	CAO	80	13	11	3 3
8383 8383		VORO LEAR	11 11 11 12	2318 0023	S15 E40 S16 E39	11 15.0 11 15.0		В	CAO EAO	155 100	2 18	8 11	3 4
8383		KAND	11 12	0820	\$15 E36	11 15.1		-	EAO		11	11	4
				· · ·									

NOAA/			Obser	vation						Corrected		Long.	
USAF	Wilson		M	Time		CMP	Max	Mag	Spot	Area	Spot	Extent	
Group	Group	Sta	Mo Day	y (UT)	Lat CMD	Mo Day	H	Class	Class	(10-6 Hemi)	Count	(Deg)	Qual
8383		SVTO	11 12	1125	S17 E32	11 14.9		В	Eco	70			
8383	28873	MWIL	11 12	1530	S15 E31	11 15.0	4	(B)	ESO	70	8	11	1
8383		LEAR	11 13	0020	\$16 E26	11 15.0		B	ESO	80	12	11	3
8383		KAND	11 13	0720	S15 E22	11 15.0		-	ESO		12	12	3
8383	28873	MWIL	11 13	1515	S15 E19	11 15.1	5	(B)			-		2
8383		HOLL	11 13	1549	S16 E18	11 15.0		В	ES0	100	8	12	4
8383		RAMY	11 13	1900	S15 E17	11 15.1		В	ESO	80	8	11	2
8383		VORO	11 13	2310	S15 E15	11 15.1			DAI	153	4	10	2
8383 8383		LEAR	11 14	0020	S16 E14	11 15.1		В	ESO	120	7	11	3
8383		TACH Ramy	11 14 11 14	0426 1345	S13 E11	11 15.0			DAO	96	5	10	3
8383		HOLL	11 14	1515	S15 E06 S15 E07	11 15.0 11 15.2		B	ESO	120	23	12	4
8383	28873	MWIL	11 14	1530	\$14 E05	11 15.0	5	В (В)	ESO	100	10	12	4
8383		LEAR	11 15	0022	S15 E01	11 15.1		B	ESO	80	10	13	3
8383		VORO	11 15	0025	\$15 E01	11 15.1		ų	CAI	161	4	11	2
8383		TACH	11 15	0452	\$14 W02	11 15.0			CAO	95	6	11	4
8383	28873	MWIL	11 1 5	1530	S14 W08	11 15.0	5	(BG)	0/10	/5	Ŷ		4
8383		TACH	11 16	0535	s13 W19	11 14.8		、 /	AR	45	5	1	4
8383		KAND	11 16	1250	\$14 W24	11 14.7			DAO		11	4	3
8383	28873	MWIL	11 16	1530	\$14 W21	11 15.0	4	(BG)					-
8383		VORO	11 16	2315	S15 W30	11 14.7			CAI	136	5	1	2
8383	200.77	KAND	11 17	0815	\$13 W35	11 14.7	-		CSO		8	6	5
8383 8383	28873	MWIL	11 17	1530	\$13 W39	11 14.7	4	(BG)			~		
8383		VORO	11 17 11 18	2315	S14 W45	11 14.6			BXI	57	5	4	3
8383		TACH Kand	11 18	0654 1150	S13 W48	11 14.7			BRO	40	4	3	2
8383	28873	MWIL	11 18	1530	S14 W51 S14 W53	11 14.6	,		AX		2	1	3
8383	20070	VORO	11 18	2315	s14 w55 s13 w57	11 14.6 11 14.7	4	(BF)	AXX	26	1		7
8383		TACH	11 19	0430	S12 W60	11 14.7			AXX	5	1	1	3 3
8383	28884	MWIL	11 19	1545	S17 W61	11 15.0	4	(AP)	AAA	2		I	2
								(<i>i</i>), <i>i</i>)					
8383B		TACH	11 20	0533	S16 W61	11 15.6			BRO	18	3	8	4
8383B	28885	MWIL	11 20	1515	S16 W65	11 15.7	4	(BP)					
8384		RAMY	11 09	1315	e34 F97	A. A. C. A.				470			
8384	28874	MWIL	11 09	1530	S26 E84 S27 E80	11 16.1	3	A	нн	170	1	3	1
8384	200,4	HOLL	11 09	1655	S28 E77	11 15.9 11 15.7	2	(AP) A	HS	120	4	2	
8384		VORO	11 09	2259	S27 E75	11 15.8		A	HAX	316	1 1	2	1 3
8384		LEAR	11 10	0112	\$27 E75	11 15.9		Α	HH	160	1	3	3
8384		TACH	11 10	0539	S28 E74	11 16.0			ннх	350	2	ž	3
8384		RAMY	11 10	1443	S26 E70	11 16.0		В	СКО	420	3	6	3
8384	28874	MWIL	11 10	1515	S27 E68	11 15.9	5	(AP)			-	•	-
8384		HOLL	11 10	1705	S28 E68	11 16.0		A	HK	440	3	4	4
8384		VORO	11 10	2359	S27 E67	11 16.2			HKX	379	1		3
8384		KAND	11 11	1005	S27 E62	11 16.2			HK		5	6	4
8384		RAMY	11 11	1322	S27 E58	11 16.1		A	HK	560	4	6	3
8384 8384		HOLL	11 11 11 11	1508	S27 E56	11 16.0		A	HK	660	3	5	3
8384		Voro Lear	11 12	2318 0023	\$27 E52 \$28 E51	11 16.0		~	HKX	764	1	-	3
8384		KAND	11 12	0025	S28 E51 S28 E47	11 16.0 11 16.0		В	CKO	440	5	7	4
8384		SVTO	11 12	1125	S27 E45	11 16.0		٨	DKO HK	600	5 3	6	4
8384	28874	MWIL	11 12	1530	S27 E43	11 16.0	5	A (AP)	HK	000	2	9	1
8384		LEAR	11 13	0020	S28 E39	11 16.1	-	B	СНО	560	7	6	3
8384		KAND	11 13	0720	S28 E35	11 16.0		-	DKO	244	3	6	3
8384	28874	MWIL	11 13	1515	S28 E30	11 16.0	6	(D)			-	-	-
8384		HOLL	11 13	1549	S27 E32	11 16.1		В	СНО	410	8	9	4
8384		RAMY	11 13	1900	S27 E29	11 16.0		В	DKO	540	3	6	2
8384		VORO	11 13	2310	S27 E26	11 16.0			нкх	687	3		2
8384		LEAR	11 14	0020	S28 E25	11 16.0		В	СНО	470	5	9	3
8384 8384		TACH	11 14	0426	S28 E26	11 16.2		-	CAO	902	5	6	3
8384 8384		RAMY HOLL	11 14 11 14	1345 1515	S28 E20	11 16.1		В	DKO	570	18	2	4
8384	28874	MWIL	11 14	1530	S27 E19 S28 E18	11 16.1	F	B	DHO	500	11	7	4
8384	200/4	LEAR	11 15	0022	SZO E10 SZ8 E14	11 16.0 11 16.1	5	(BG)	סעת	100	0	0	7
8384		VORO	11 15	0025	S28 E12	11 15.9		B	DHO НКХ	480 422	8 7	9	3
8384		TACH	11 15	0452	\$28 E12	11 16.1			нка НАХ	422 582	5	5	2 4
8384	28874	MWIL	11 15	1530	S28 E06	11 16.1	5	(BP)	нлА	202	ر	ر	4
8384		TACH	11 16	0535	\$28 W01	11 16.1	-		CAX	671	5	6	4
8384		KAND	11 16	1250	\$28 W05	11 16.1			DKO		11	9	3
											•		•

SUNSPOT GROUPS (Ordered by Central Meridian Passage Date)

NOAA/	Mt		Observ	ation						Corrected		Long.	
USAF	Wilson		000011	Time		СМР	Max	Mag	Spot	Area	Spot	Extent	
Group	Group	Sta	Mo Day	(UT)	Lat CMD	Mo Day	H	Class	Class	(10-6 Hemi)	Count	(Deg)	Qual
8384	28874	MWIL	11 16	1530	S28 W06	11 16.2	5	(D)					
8384		VORO	11 16	2315	S29 W10	11 16.2			DKI	625	7	5	2
8384 8384	28874	KAND MWIL	11 17 11 17	0815 1530	S28 W16 S28 W21	11 16.1 11 16.0	5	(BP)	DKO		10	8	5
8384	20074	VORO	11 17	2315	S29 W24	11 16.1	2		DKI	629	6	4	3
8384		TACH	11 18	0654	S28 W26	11 16.2			CAI	607	11	5	2
8384		KAND	11 18	1150	\$28 W29	11 16.2	_		DHO		11	9	3
8384	28874	MWIL	11 18	1530	S28 W32	11 16.1	5	(BG)	DKI	570	7	F	7
8384 8384		VORO TACH	11 18 11 19	2315 0430	s30 W35 s27 W41	11 16.2 11 16.0			DKI HA	578 690	7 8	5 3	3 3
8384		KAND	11 19	0715	S28 W41	11 16.1			HK	070	3	6	3
8384	28874	MWIL	11 19	1545	\$28 W45	11 16.1	5	(AP)			_	-	-
8384		VORO	11 19	2325	s28 W50	11 16.1			нкх	499	6		3
8384	2007/	TACH	11 20	0533	\$27 W53	11 16.1	-	(00)	HA	602	5	4	4
8384 8384	28874	MWIL VORO	11 20 11 21	1515 0010	S27 W58 S28 W64	11 16.1 11 16.0	5	(BG)	нкх	547	3		3
8384		TACH	11 21	0608	S26 W65	11 16.2			HA	215	2	3	3
8384	28874	MWIL	11 21	1515	S27 W70	11 16.2	5	(AP)			-		-
8384		VORO	11 21	2335	s28 W76	11 16.0			HAX	339	1		2
8384		LEAR	11 22	0005	s25 W74	11 16.3		В	ско	330	6	8	4
8384	2007/	TACH	11 22	0456	S28 W79	11 16.0	,	40	HSX	100	2	4	4
8384	28874	MWIL	11 22	1515	s27 W81	11 16.3	4	AP					
8388		LEAR	11 14	0020	N20 E53	11 18.1		А	AX		1		3
8388		TACH	11 14	0426	N22 E51	11 18.1			AR	3	1	1	3
8388		RAMY	11 14	1345	N23 E46	11 18.1		В	CSO	30	7	5	4
8388	20070	HOLL	11 14	1515	N23 E47	11 18.2	,	B	CSO	40	4	4	4
8388 8388	28879	MWIL LEAR	11 14 11 15	1530 0022	N22 E46 N21 E42	11 18.2 11 18.2	4	(B) B	CSO	30	4	6	3
8388		TACH	11 15	0452	N22 E37	11 18.0		b	AR	2	2	2	4
8388	28879	MWIL	11 15	1530	N22 E33	11 18.2	4	(BP)		-	_	-	
8388		TACH	11 16	0535	N22 E25	11 18.1			BXO	6	3	4	4
8388	20070	KAND	11 16	1250	N21 E18	11 17.9	,	<i>.</i>	AX		2		3
8388 8388	28879 28879	MWIL MWIL	11 16 11 17	1530 1530	N22 E20 N21 E06	11 18.2 11 18.1	4	(B) (B)					
0000	20017	HANT C	11 17	1550	NET LUO	11 10.1	4	(6)					
8386	28877	MWIL	11 12	1530	\$21 E73	11 18.2	3	AP					
8386		LEAR	11 13	0020	S21 E71	11 18.4		В	BXO		2	5	3
8386		KAND	11 13	0720	S21 E65	11 18.3			AX		3	1	3
8386 8386	28877	MWIL	11 13 11 13	1515 1549	S21 E60 S20 E60	11 18.2 11 18.2	4	(AP)	AV	20	7	-	,
8386		HOLL RAMY	11 13	1900	S20 E58	11 18.2		A A	AX AX	20	3 1	2	4 2
8386		VORO	11 13	2310	S20 E57	11 18.3			AXX	27	ż		2
8386		LEAR	11 14	0020	S22 E56	11 18.3		Α	HS	40	1	1	3
8386		TACH	11 14	0426	S20 E53	11 18.2			AXX	11	2	2	3
8386		RAMY	11 14	1345	S20 E48	11 18.2		B	BXO	30	3	3	4
8386 8386	28877	HOLL MWIL	11 14 11 14	1515 1530	S18 E48 S21 E48	11 18.3 11 18.3	4	B (BP)	BXO	40	5	3	4
8386	20077	LEAR	11 15	0022	S21 E43	11 18.3	**	A	HS	20	1	1	3
8386		TACH	11 15	0452	S19 E40	11 18.2			AXX	2	ż	1	4
8386	28877	MWIL	11 15	1530	S19 E36	11 18.4	3	(B)					
8386		VORO	11 22	2327	S19 W67	11 17.9			BXO	17	2	4	3
8386 8386	28889	LEAR MWIL	11 23 11 23	0015 1515	S17 W67	11 17.9	1	B	BXO	10	2	5	4
0000	20007	m#11.	11 20	כונו	s18 W75	11 17.9	4	(B)					
8387	28878	MWIL	11 13	1515	N23 E73	11 19.3	3	(AP)					
8387		HOLL	11 13	1549	N24 E72	11 19.2		A	AX	10	1	1	4
8387		RAMY	11 13	1900	N24 E69	11 19.1		A	AX		1		2
8387 8387		LEAR	11 14	0020	N22 E68	11 19.2		A	AX	Ó	1	1	3
8387		TACH Ramy	11 14 11 14	0426 1345	N24 E67 N23 E58	11 19.4 11 19.0		в	AXX BXO	8 10	3 3	1 4	3 4
8387		HOLL	11 14	1515	N23 E58	11 19.1		B	BXO	20	2	3	4
8387	28878	MWIL	11 14	1530	N23 E59	11 19.2	4	(AP)					
8387		LEAR	11 15	0022	N22 E55	11 19.2		A	HS	20	1	1	3
8387	20070	TACH	11 15	0452	N24 E53	11 19.3	~		AXX	1	1	1	4
8387 8387	28878	MWIL TACH	11 15 11 16	1530 0535	N23 E47 N24 E39	11 19.3 11 19.2	3	(AP)	AR	12	2	1	4
8387		KAND	11 16	1250	N24 E39 N23 E35	11 19.2			CRO	16	3	2	3
8387	28878	MWIL	11 16	1530	N23 E34	11 19.3	5	(AP)			-	-	-

			<u></u>										
NOAA/			Obser	vation						Corrected		Long.	
USAF Group	Wilson Group	\$to	No Do	Time	1.** 010	CMP	Max	Mag	Spot	Area	Spot	Extent	
aroup	aroup	Sta	mo Da	y (UT)	Lat CMD	Mo Day	H	Class	Class	(10-6 Hemi)	Count	(Deg)	Qual
8387		KAND	11 17	0815	N24 E25	11 19.3			CRO				
8387	28878	MWIL	11 17		N24 E21	11 19.3	4	(BP)	UKU		5	4	5
8387	+	VORO	11 17		N25 E16	11 19.2	-	(pr)	BXI	35	4	1	7
8387		TACH	11 18		N23 E12	11 19.2			AR	15	2	1	3 2
8387		KAND	11 18		N23 E08	11 19.1			AX	12	1	I	3
8387	28878	MWIL	11 18		N23 E07	11 19.2	4	(AP)	00				2
8387		TACH	11 19	0430	N24 W01	11 19.1	-		AXX	10	1	1	3
8387	28878	MWIL	11 19	1545	N24 W05	11 19.3	3	(AP)			-	•	-
8394		VOBO	11 37	27/5	01/ 1/70	44 24 4							
8394		VORO LEAR	11 23 11 24		S16 ₩38	11 21.1			BXI	31	3	2	3
8394		TACH	11 24		\$15 W37 \$16 W41	11 21.2 11 21.1		В	BXO	40	6	4	4
8394		KAND	11 24		\$16 W42	11 21.2			BAO DSO	48	5 4	2	3
8394		SVTO	11 24	1142	\$17 W44	11 21.1		в	CSO	30	3	5 4	4
8394	28892	MWIL	11 24	1515	S16 W46	11 21.1	4	(B)	030	50	2	4	2
8394		RAMY	11 24	1546	\$16 W47	11 21.1	•	B	вхо	10	4	4	2
8394		HOLL	11 24	1628	\$17 W46	11 21.2		B	CSO	30	4	4	2
8394		VORO	11 24	2318	s16 W51	11 21.1		-	CAI	86	4	4	2
8394		LEAR	11 25	0040	S14 W50	11 21.2		в	BXO	60	5	6	3
8394		TACH	11 25	0457	\$16 W53	11 21.2			CAI	166	8	4	3
8394		SVTO	11 25	0832	S15 W55	11 21.2		В	CSO	120	8	8	3
8394	28892	MWIL	11 25	1515	S15 W58	11 21.2	5	(D)			-	•	~
8394		HOLL	11 25	1610	S15 W61	11 21.0		B	CAO	100	8	8	4
8394		RAMY	11 25	1740	S15 W61	11 21.1		В	DAO	110	5	8	3
8394		LEAR	11 26	0100	s14 W64	11 21.2		В	CSO	120	6	7	3
8394		TACH	11 26	0516	S15 W67	11 21.1			CRO	27	3	3	2
8394		KAND	11 26	0825	\$15 W73	11 20.8			HS		1	2	2
8394 8394		SVTO	11 26	0845	S15 W75	11 20.7		Α	AX	10	1		3
8394 8394	20002	RAMY	11 26	1223	\$16 W73	11 21.0		В	CSO	40	4	8	3
8394	28892	MWIL	11 26	1600	S15 ₩72	11 21.2	4	(B)					
0374		LEAR	11 27	0018	s14 W75	11 21.3		B	BXO	10	2	8	4
8394C	28881	MWIL	11 16	1530	S11 E70	11 21.9	3	(AP)					
8394A		TACH	11 20	0533	N19 E34	11 22.8			AR	12	2	1	4
8394A	28886	MWIL	11 20	1515	N18 E29	11 22.8	4	(B)			-		4
8394A		TACH	11 27	0619	N19 W57	11 22.9			DAI	340	8	7	3
970/1		**	44 04										
8394B		TACH	11 24	0557	\$09 W15	11 23.1			HSX	170	4	2	3
8391		VORO	11 17	2315	\$17 E72	11 23.4			HAX	38	4		-
8391		TACH	11 18	0654	S18 E69	11 23 5			AXX	25	1	4	3
8391		KAND	11 18	1150	S18 E67	11 23.6			CRO	20	1 2	1 5	2
8391	28883	MWIL	11 18	1530	S17 E65	11 23.6	4	(BP)	uλŲ		2	2	3
8391		VORO	11 18	2315	\$16 E58	11 23.4		(0) /	HAX	22	1		3
8391		TACH	11 19	0430	S18 E57	11 23.5			BRO	86	4	4	3
8391		KAND	11 19	0715	\$17 E56	11 23.5			CRO	**	5	8	3
8391	28883	MWIL	11 19	1545	S17 E52	11 23.6	4	(BP)			-	•	Ş
8391		VORO	11 19	2325	\$16 E47	11 23.5		-	CAI	110	8	8	3
8391		TACH	11 20	0533	\$16 E43	11 23.5			CAI	98	13	8	4
8391	28883	MWIL	11 20	1515	S17 E39	11 23.6	4	(B)					
8391		VORO	11 21	0010	\$16 E33	11 23.5			CAI	122	14	10	3
8391	20007	TACH	11 21	0608	S17 E31	11 23.6	_		BRI	59	8	8	3
8391	28883	MWIL	11 21	1515	S17 E25	11 23.5	5	(BG)					
8391 8391		VORO	11 21	2335	\$16 E21	11 23.6		-	CAI	127	12	10	2
8391			11 22	0005	S18 E20	11 23.5		В	CAO	50	18	11	4
8391	28883	TACH MWIL	11 22 11 22	0456 1515	S16 E18	11 23.6	F	1001	CRO	87	9	9	4
8391	20000	VORO	11 22	2327	S16 E10	11 23.4	5	(BP)					_
8391		LEAR	11 23	0015	S17 E07 S18 E07	11 23.5 11 23.5		р	CAO	196	7	10	3
8391		TACH	11 23	0654	S18 E07 S14 W01	11 23.2		В	CAO	100	8	12	4
8391	28883	MWIL	11 23	1515	\$14 W01 \$15 W05	11 23.2	4	(RD)	HSX	180	4	2	3
8391		HOLL	11 23	1536	S15 W04	11 23.3	4	(BP) B	CSO	10	0	0	,
8391		VORO	11 23	2345	S16 W08	11 23.4		Þ	CAI	10 201	8 9	8	4
8391		LEAR	11 24	0028	S14 W12	11 23.1		A	HS	100	4	7 2	3 4
8391			11 24	0855	S14 W17	11 23.1		n	HA	100	4 3	2 3	4
8391			11 24	1142	S15 W18	11 23.1		А	HS	120	4	3	2
8391	28883	MWIL	11 24	1515	\$15 W20	11 23.1	4	(AP)			-	5	-
8391		RAMY	11 24	1546	\$14 W22	11 23.0		A	HS	100	4	2	2
												The second se	

					N	IOVEMB	ER	199	8				
NOAA/ USAF Group	Mt Wilson Group	Sta	Observat T Mo Day (ime	at CMD	CMP Mo Day	Max H	Mag	Spot Class	Corrected Area (10-6 Hemi)	Spot Count	Long. Extent (Deg)	Qual
						·····							
8391 8391		HOLL VORO			5 W21 5 W25	11 23.1 11 23.1		А	HS Hax	80 127	1	2	2
8391		LEAR			4 W26	11 23.1		A	HS	90	2 2	3	2
8391		TACH			5 W28	11 23.1			HSX	300	3	ž	2 3 3
8391		SVTO			4 W29	11 23.2		Α	HS	70	3	2	3
8391	28883	MWIL			4 W33	11 23.1	5	(AP)				_	_
8391 8391		HOLL RAMY			4 W35 4 W35	11 23.0 11 23.1		A	HA	50	4	2	4
8391		VORO			4 waa 5 waa	11 23.0		В	CAO HAX	60 109	5 1	3	3
8391		LEAR		•	4 W39	11 23.1		Α	HS	70	3	2	3
8391		TACH			4 W42	11 23.0			HSX	50	1	2	2 3 2 3 3
8391		KAND			4 W44	11 23.0			HA		1	2	2
8391 8391		SVTO Ramy			5 W45	11 22.9		A	HA	30	1	1	3
8391	28883	MWIL			5 W47 4 W47	11 22.9 11 23.1	4	A (AP)	HA	40	3	2	3
8391		LEAR			4 W52	11 23.1	-	A	HS	30	1	1	4
8391		TACH		619 s2	1 W56	11 23.0			HSX	50	1	1	3
8391		SVTO			4 W57	11 23.0		Α	HS	20	1	1	3
8391 8391	28883	RAMY			6 W60	11 23.0	,	A	AX	10	1		2
8391	20002	MWIL HOLL			4 W60 6 W62	11 23.1 11 23.0	4	(AP) A	HS	40	1	1	3
8391		VORO			5 W67	11 22 9		n	HAX	73	1	I	3
8391		LEAR		025 S1	4 W64	11 23.2		А	AX	10	1	1	3
8391		RAMY	11 28 1	220 \$1	6 W72	11 23.0		A	AX		1		3
8396	28890	MWIL			7 W02	11 23.5	4	(AP)					
8396		HOLL			7 W03	11 23.4		Α	AX	100	2	1	4
8396 8396	20000	LEAR			7 W07	11 23.5	,	A	AX		1	1	4
8396	28890	MWIL VORO			8 W27 8 W32	11 23.5 11 23.5	4	(AF)	BXI	31	3	3	2
8396		LEAR			9 W32	11 23 5		в	CRO	20	6	5	3
8396		TACH			7 W35	11 23.5		-	BRO	25	5	5 3	2
8396		KAND			7 W38	11 23.4			CRO		3	5	2 2
8396 8396		SVTO			7 W38	11 23.4		B	BXO	20	3	4	3
8396	28890	RAMY MWIL			7 W40 7 W40	11 23.4 11 23.5	5	B (B)	CRO	40	8	4	3
8396	20070	LEAR			7 W45	11 23.5	2	B	DAO	60	9	6	4
8396		TACH			5 W49	11 23.5			DAI	181	6	5	3
8396		SVTO			6 W50	11 23.4		8	DAO	80	6	6	3
8396		RAMY			5 W53	11 23.4		В	DAO	90	5	7	2
8396 8396	28890	MWIL			7 W54 6 W56	11 23.4 11 23.3	4	(B)	D CO	440	,	7	
8396		HOLL VORO			6 W50 6 W59	11 23.3 11 23.4		В	DSO DAI	110 208	6 3	7 6	3 3
8396		LEAR			7 W57	11 23.6		в	CSO	80	3	7	3
8396		RAMY	11 28 12	220 NZ	5 W66	11 23.4		В	CAO	90	6	8	3
8396		HOLL			6 W68	11 23.4		В	CSO	50	6	8	1
8396 8396		LEAR VORO			7 W73	11 23.3		В	CSO	90	7	9	3
8396		SVTO			6 W76 7 W75	11 23.3 11 23.5		в	DKI DAO	432 170	8 5	8 7	3 3
8396		RAMY			7 ₩77	11 23.5		В	DAO	150	9	5	5
8396	28890	MWIL	11 29 1	530 N2	6 W80	11 23.4	4	В		124		2	2
8396		LEAR			8 W83	11 23.5		В	BXO	10	3	6	3
8396		VORO	11 30 00	050 N2	5 W83	11 23.6			HAX	133	1		2
8396A	28888	MWIL			6 E48	11 26.4	3	(AP)					
8396A	20000	TACH			6 E39	11 26.3			AXX	10	1	1	3
8396A 8396A	28888	MWIL HOLL			6 E35 6 E34	11 26.3 11 26.3	3	(B) P	evo	20	2	7	,
8396A		VORO			6 E29	11 26.2		В	BXO AXX	20 8	2 1	3	4 3
8396A		LEAR			6 E29	11 26.3		Α	AX	5	1	1	4
8396A		TACH		557 N2	7 E26	11 26.3			AXX	5	1	1	3
8396A	20002	KAND			6 E24	11 26.2	_		AX		1	1	4
8396A	28888	MWIL	11 24 15	515 N2	6 E21	11 26.3	3	(AP)					
8392	0000-	VORO			2 E86	11 27.6			HAX	101	1		3
8392 8392	28887	MWIL			3 E78	11 27.6	4	(AP)		30	~	,	
8392		LEAR Tach			3 E70 2 E72	11 27.4 11 27.7		В	CAO AXX	30 10	2 1	4 1	4 4
8392	28887	MWIL			2 E63	11 27.5	4	(AP)	000	10	1		4
	-						•						

117 Nov 98

NOAA/		_	Obse	rvation						Corrected		Long.	
USAF Group	Wilsor Group	ו Sta	No. D	Time ay (UT)		CMP	Max	Mag	Spot	Area	Spot	Extent	
		JLA		ay (U1)	Lat CMD	Mo Day	H	Class	Class	(10-6 Hemi)	Count	(Deg)	Qua
8392		VORO	11 22	2 2327	S22 E60	11 27.6			CAO	43	2	4	3
8392		LEAR	11 23	3 0015		11 27.5		В	CAO	30	3	5	3 4
8392		TACH	11 23		\$21 E56	11 27.6			AR	30	2	4	3
8392	28887	MWIL	11 23		S22 E53	11 27.7	4	(BP)			-	•	-
8392 8392		HOLL	11 23		S20 E54	11 27.8		В	CSO	40	5	7	4
8392		VORO	11 23		S22 E46	11 27.5			CAI	41	3	4	3
8392		LEAR TACH	11 24 11 24		S23 E45 S22 E42	11 27.5		В	BXO	30	3	6	4
8392		KAND	11 24		S22 E42	11 27.5			AR	41	4	4	3
8392		SVTO	11 24		\$22 E42	11 27.6 11 27.9		D	CSO	20	5	8	4
8392	28887	MWIL	11 24		S22 E39	11 27.6	4	B (AP)	CSO	20	4	4	2
8392		RAMY	11 24		S23 E39	11 27.7	4	B	вхо	10	,	7	~
8392		HOLL	11 24	1628	S23 E36	11 27.5		В	CSO	30	4 2	7 4	2
8392		VORO	11 24	2318	\$23 E33	11 27.5		5	CAO	47	2	4	2 2
8392		LEAR	11 25		S23 E32	11 27.5		в	BXO	20	2	4	3
8392		TACH	11 25		S23 E31	11 27.6			BRO	56	5	9	3
8392		SVTO	11 25		\$23 E27	11 27.4		В	CRO	10	2	4	3
8392	28887	MWIL	11 25		S22 E26	11 27.6	4	(BG)			_	•	
8392		HOLL	11 25		S22 E26	11 27.7		В	CRO	30	9	9	4
8392 8392		RAMY	11 25		\$23 E24	11 27.6		В	BXO	20	5	4	3
5392 8392		VORO	11 25		\$23 E20	11 27.5			HSX	57	5		323223
8392		LEAR	11 26		S23 E19	11 27.5		в	CRO	20	8	4	3
8392		TACH Kand	11 26 11 26	-	S22 E14	11 27.3			BRO	40	4	1	2
3392		SVTO	11 26		\$22 E15 \$23 E16	11 27.5		_	BXI		9	8	2
8392		RAMY	11 26	1223	S23 E16	11 27.6		В	BXO	20	6	7	3
8392	28887	MVIL	11 26		\$22 E12	11 27.6 11 27.6	4	B	BXO	20	14	9	3
3392		LEAR	11 27	0018	S21 E07	11 27.5	4	(G) B	nvo	40	~	-	
3392		TACH	11 27	0619	S22 E04	11 27.6		Þ	BXO BRO	10	8	7	4
3392		SVTO	11 27	0710	S23 E03	11 27.5		в	CRO	37 10	4 5	2	3
3392		RAMY	11 27	1242	\$23 E01	11 27.6		B	BXO	10	3	4 3	3 2
3392	28887	MWIL	11 27	1530	S23 W01	11 27.6	4	(BP)	DAG	10	5	2	2
3392		HOLL	11 27	1617	S24 E01	11 27.7		B	CSO	20	4	6	3
3392		VORO	11 27	2354	S22 W07	11 27.4			HAX	22	1	Ū	3
3392		LEAR	11 28	0025	S22 W08	11 27.4		В	BXO	20	2	3	ž
3392	28887	MWIL	11 29	1530	\$24 ₩24	11 27.8	3	(B)					-
392A		LEAR	12 03	0016	N19 W69	11 27.8		Α	AX	10	2	1	3
3392B	28903	MWIL	12 02	1530	N19 W52	11 28.8	4	(AP)					
392B		VORO	12 02	2326	N18 W58	11 28.6	•		HAX	36	1		3
392B		HOLL	12 03	1523	N19 W68	11 28,5		Α	AX	10	1		3
392B	28903	MWIL	12 03	1530	N19 W66	11 28.7	4	(B)		10			5
392B		LEAR	12 04	0052	N18 W70	11 28.8		A	AX		1		2
392C		LEAR	12 03	0016	N19 W49	11 29.4		A	AX	10	2	1	3
393		LEAR	11 23	0015	\$18 E83	11 29.3		٨	це	(0			
393		TACH	11 23	0654	\$15 E80	11 29.3		A	HS	60 75	1	6	4
393	28891	MWIL	11 23	1515	\$17 E77	11 29.5	5	(AP)	HSX	35	1	2	3
393		HOLL	11 23	1536	S17 E75	11 29.3	-	B	DSO	210	2	F	,
393		VORO	11 23	2345	\$16 E75	11 29.7		2	DSO	727	2 4	5 3	4 z
393		LEAR	11 24	0028	S18 E73	11 29.6		в	DAO	270	2	ა 8	3 4
393		TACH	11 24	0557	\$19 E73	11 29.8		-	DAI	312	7	10	3
393		KAND	11 24	0855	S18 E74	11 30.0			FAO		10	16	4
393		SVTO	11 24	1142	S18 E71	11 29.9		в	FSO	370	9	19	2
393	28891	MWIL	11 24	1515	S17 E65	11 29.6	5	(B)			-	••	-
593 707		RAMY	11 24	1546	S19 E72	11 30.1		В	FHI	440	12	19	2
593 107		HOLL	11 24	1628	S20 E70	11 30.0		B	FSC	60	16	18	2
593 593		VORO	11 24	2318	S18 E67	11 30.1			DKI	780	6	13	2
593 593			11 25	0040	\$19 E62	11 29.7		В	CSO	350	14	13	3
193 193		TACH	11 25	0457	S20 E62	11 29.9			DAI	742	24	14	3
593 593	28891	SVTO MWIL	11 25	0832	S18 E58	11 29.8	-	В	FSO	480	22	20	3
593	20071	HOLL	11 25 11 25	1515 1610	S17 E54	11 29.7	5	(BG)					
393			11 25	1740	S19 E55	11 29.9		B	FK1	520	41	18	4
393		VORO	11 25	2356	S19 E52 S19 E53	11 29.7 11 30.0		В	FHO	340	29	15	3
393			11 26	0100	\$19 E55 \$19 E50	11 29.8			DKI	810	15	13	2
								BG	FHO	440	35	16	3
393		TACH	11 26	0516	S18 E47	11 29.8			DAI	437	10	12	2

SUNSPOT GROUPS (Ordered by Central Meridian Passage Date)

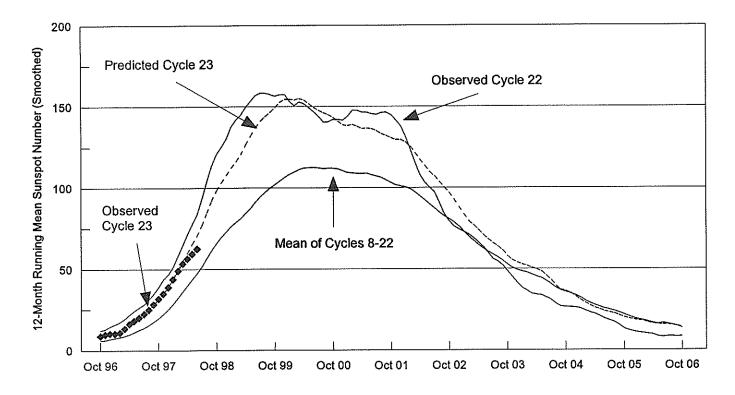
NOAA/ USAF	Mt Wilson		Observ	ation Time		CMP	Max	Mag	Spot	Corrected Area	Spot	Long. Extent	
Group	Group	Sta	Mo Day		Lat CMD	Mo Day	H	-	Class	(10-6 Hemi)	Count	(Deg)	Qual
8393		KAND	11 26	0825	S17 E45	11 29.8			FSO	/ 90	12	16	2
8393 8393		SVTO RAMY	11 26 11 26	0845	S19 E46 - S19 E44	11 29.9 11 29.9		B B	FHO FSO	480 350	17 42	17 16	3 3
8393	28891	MWIL	11 26	1600	S18 E40	11 29.7	5	(BG)	130	000	42	10	2
8393		LEAR	11 27	0018	S19 E37	11 29.8	-	BG	FAC	330	35	17	4
8393		TACH	11 27	0619	S18 E33	11 29.8			CAI	454	22	13	3
8393		SVTO	11 27	0710	S19 E33	11 29.8		BG	FSI	230	23	16	3
8393 8393	28891	RAMY MWIL	11 27 11 27	1242 1530	S19 E29 S19 E26	11 29.7 11 29.6	5	B (BG)	FAO	300	19	16	2
8393	20071	HOLL	11 27	1617	\$19 E20	11 29.9	2	В	FSO	350	30	17	3
8393		VORO	11 27	2354	\$19 E24	11 29.8		-	DKI	539	22	15	3
8393		LEAR	11 28	0025	S19 E24	11 29.8		BG	ESC	280	22	15	3
8393		RAMY	11 28	1220	S18 E17	11 29.8		BG	FSO	300	32	16	3
8393 8393		HOLL LEAR	11 28 11 29	1645 0044	S18 E15 S18 E08	11 29.8 11 29.6		BG B	FSO CSO	320 280	17 26	16 15	1 3
8393		VORO	11 29	0425	S18 E08	11 29.8		Ъ	DKI	397	44	14	3
8393		SVTO	11 29	0825	S19 E04	11 29.6		В	FAO	380	31	18	3 3
8393		RAMY	11 29	1251	S18 E03	11 29.8		B	CAO	210	33	17	5
8393	28891	MWIL	11 29	1530	S18 W02	11 29.5	5	(BG)		470	. ,		
8393		LEAR	11 30	0040	S18 W03	11 29.8		B	CAO	170	24	18	3 2
8393 8393	28891	VORO MWIL	11 30 11 30	0050 1530	S17 W08 S18 W15	11 29.4 11 29.5	5	(BP)	CAI	326	6	6	2
8393	20071	RAMY	11 30	1548	S18 W12	11 29.7	2	B	cso	130	17	17	3
8393		HOLL	11 30	1630	\$19 W12	11 29.8		В	CSO	140	13	16	3 3
8393		VORO	11 30	2323	S19 W18	11 29.6			CAI	281	6	12	2 3
8393		LEAR	12 01	0010	\$16 W18	11 29.7		В	CAO	170	13	14	3
8393 8393		TACH	12 01 12 01	0551 1008	s17 w22 s18 w25	11 29.7 11 29.6		B	CAI EAO	305 170	7 16	12 15	3 3
8393		SVTO Ramy	12 01	1415	S16 W25	11 29.7		B	CSO	110	10	14	3
8393		HOLL	12 01	1540	s18 W28	11 29.6		B	cso	160	12	12	3
8393	28891	MWIL	12 01	1545	s17 W30	11 29.5	5	(BP)					
8393		VORO	12 01	2344	s17 W28	11 30.0		_	CAI	138	2	2	3
8393		LEAR	12 02	0008 0800	\$16 W33	11 29.6		B	CAO	90	6	13 2	3 2
8393 8393		KAND Ramy	12 02 12 02	1317	S16 W41 S17 W39	11 29.3 11 29.7		В	HS CSO	100	1 4	13	3
8393	28891	MWIL	12 02	1530	\$15 W46	11 29.3	4	(AP)		100	•		-
8393		VORO	12 02	2326	\$16 W52	11 29.1		• •	HAX	177	1		3
8393		LEAR	12 03	0016	\$15 W51	11 29.2		A	HS	120	1	2	3
8393	20004	HOLL	12 03	1523	S15 W60	11 29.2	F	A	HS	50	2	2	3
8393 8393	28891	MWIL LEAR	12 03 12 04	1530 0052	S16 W59 S14 W65	11 29.3 11 29.2	5	(AP) A	HS	90	1	2	2
8393		KAND	12 04	0820	\$14 W65	11 29.2		ĸ	HS	90	1	ź	4
8393	28891	MWIL	12 04	1530	s16 W72	11 29.3	4	(AP)				-	
8393		HOLL	12 04	1630	s16 W74	11 29.2		A	HA	60	1	2	3
8393		RAMY	12 04	1800	\$16 W75	11 29.2		Α	HS	40	1	1	1
8393		VORO	12 05	0118	S15 W80	11 29.1			HAX	158	1 2	6	3
8393 8393		TACH SVTO	12 05 12 05	0634 0742	\$16 W77 \$16 W89	11 29.5 11 28.7		A	CSO HS	35 10	1	1	3 3
03/3		0110	12 02	0,12	010 1107			~		10	•	•	-
8398	28893	MWIL	11 24	1515	N17 E78	11 30.6	4	(AP)					
8398	0000-	TACH	11 25	0457	N16 E70	11 30.5			HR	50	1	1	3
8398	28893	MWIL	11 25	1515	N17 E64	11 30.5	4	(BP)	U A Y	53	4		2
8398 8398		VORO TACH	11 25 11 26	2356 0516	N17 E60 N16 E59	11 30.5 11 30.7			HAX BRO	30	1 2	8	2
8398		KAND	11 26	0825	N20 E65	12 1.3			FAO	50	6	31	2 2 2
8398	28893	MWIL	11 26	1600	N17 E52	11 30.6	5	(BP)					
8398		TACH	11 27	0619	N17 E40	11 30.3			HXX	50	1	1	3
8398	28893	MWIL	11 27	1530	N16 E37	11 30.4	5	(AP)		54	~	,	7
8398 8398		VORO	11 27 11 29	2354 0425	N17 E32 N17 E16	11 30.4			CAO	51 35	2 3	4 4	3 3
8398	28893	VORO MWIL	11 29	1530	N17 E10 N16 E12	11 30.4 11 30.5	4	(BP)	CAO	LC.	5	4	J
8398		VORO	11 30	0050	N16 E05	11 30.4	т	VUL 1	BXI	31	4	4	2
8398	28893	MWIL	11 30	1530	N17 E01	11 30.7	5	(BG)					
8398		HOLL	11 30	1630	N18 W01	11 30.6		В	CAO	60	12	7	3
8398		VORO	11 30	2323	N16 W05	11 30.6		'n	BXI	19	3	3	2
8398 8398		LEAR TACH	12 01 12 01	0010 0551	N18 W04 N18 W06	11 30.7 11 30.8		B	CAO CAO	60 120	9 2	7 4	ב ד
8398		SVTO	12 01	1008	N18 W07	11 30.8		В	DSO	80	9	6	2 3 3 3 3
8398		RAMY	12 01	1415	N19 W09	11 30.9		B	CAO	50	6	5	3

NOVEMBER 1998

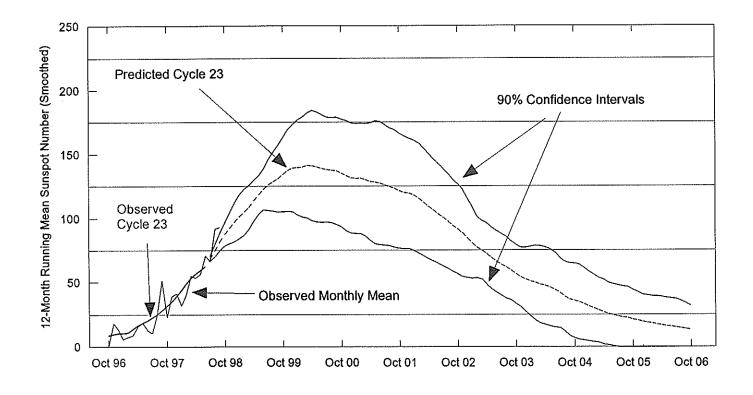
NOAA/ USAF Group	Mt Wilson Group	Sta	Observ Mo Day	Time	Lat CMD	CMP Mo Day	Max H	Mag Class	Spot Class	Corrected Area (10-6 Hemi)	Spot Count	Long. Extent (Deg)	Qual
8398		HOLL	12 01	1540	N18 W12	11 30.7		B	CAO	90	7	9	3
8398	28893	MWIL	12 01	1545	N17 W12	11 30.7	4	(D)			,	,	2
8398		VORO	12 01	2344	N18 W23	11 30.2			AXX	18	1		3
8398		LEAR	12 02	8000	N18 W17	11 30.7		В	CAO	20	12	11	3
8398		KAND	12 02	0800	N19 W13	12 1.3			EAO		6	11	
8398		RAMY	12 02	1317	N18 W22	11 30.9		в	CAO	20	7	4	2 3
8398	28893	MWIL	12 02	1530	N18 W22	12 1.0	4	(AP)			•	-	5
8398		LEAR	12 03	0016	N19 W28	11 30.9		В	BXO	20	7	4	3
8398		HOLL	12 03	1523	N18 W35	12 1.0		Α	AX	20	2	2	3
8398	28893	MWIL	12 03	1530	N17 W35	12 1.0	4	(BF)			-	-	2
8398		LEAR	12 04	0052	N18 W40	12 1.0		В	BXO	10	5	5	2
8398		KAND	12 04	0820	N18 W38	12 1.4			CAO		, 9	7	4
8398	28893	MWIL	12 04	1530	N17 W48	12 1.0	3	(AF)				•	-
8398		HOLL	12 04	1630	N18 W48	12 1.0		В	BXO	10	3	3	3
8398		RAMY	12 04	1800	N18 W50	11 30.9		В	BXO	10	3	4	1
8398		HOLL	12 05	1610	N17 W56	12 1.4		В	CSO	160	2	4	7
8398		KAND	12 06	1045	N19 W66	12 1.4			HS	•	1		5
8398		HOLL	12 06	1540	N18 W68	12 1.5		A	HS	200	1	2 3	4
8398		LEAR	12 07	0340	N20 W75	12 1.4		A	HA	80	1	2	2

Stations reporting:

MWIL = Mt. Wilson PALE = Palehua


HOLL = Holloman KAND = Kandilli LEAR = Learmonth

PALE = Palehua RAMY = Ramey SVTO = San Vito TACH = Tashkent VORO = Voroshilov



Predicted Cycle 23 Compared With Historical Data

Based On August 1997 Observed Value

Updated Prediction for Cycle 23 Based on June 1998 Observed Value

=====	*******		=======			N =======	OVEMB	ER 19	998				
Day	Start (UT)		End	Imp	Wide Spread Index	Number of SWF	Stat SEA	ion R SPA	leport LF- SPA	s by T SES	ype Flare (UT)	X-ray Class	NOAA Region
01	1205	1226	1258	1	1						1147	B6.6	8375
01	1306	1321	1345	1	1		1				1381	B5.2	8373
02	1147	1150	1230	1	1		1				No flare		
02	1352	1408	1430	1	1		1				1355	C4.4	
03	1911	1923	2033	3-	3					3	1911	M1.0	
04	0404	0406	0415	1-	1					1	No flare		
04 04	0623 0714	0650 0719	0839 0745	2 1+	1		1				0615		8375
04	0850	0905	0745	1	1 1					1 1	0713	C1.6	8375
04	1035	1045	1050	1-	1					1	0849 1036	C1.7 C2.0	8375
04	1229	1242	1509	1	1		1			•	1225	C5.0	8375
04	1543	1549	1604	1	5					2	1542	C2.4	8375
05	0451	0455	0522	1+	1					1	0454	C7.7	8375
05	0607	0610	0633	1	1					1	0609	C2.7	8375
05 05	0803 1038	0806 11160	0825	1	3					2	0801	C2.5	8375
05	1332	1336	1222 1420	1 2-	1 5		1 1			F	1050	C1.0	8375
05	1821	1824	1925	2	3		1			5 4	1330 1831E	M1.5	8375
05	1941	1947	2111	2+	3					5	1900	M8.4 M8.4	8375 8375
05	2209	2215	2230	1	1					1	2215E	1014	8375
06	0433	0435	0452D	1-	1					1	0434	C1.1	8375
06	0452E	0455	0515	1	1					1	0453	C1.4	8375
06 06	0707	0710	0732	1	1					1	0709	C1.6	
06	0752 0829	0755 0832	0815 0844	1 1-	1 3					1	0755	C2.4	8375
06	0848	0849	0902	1-	3					3 2	0828 0849	C3.5	8375
06	0908	0911	0927	1-	3					2	0907	C3.0 C4.2	8375 8375
06	1106	1110	1117	1-	3					2	1105	C2.3	8375
06	1159	1207	1228	1-	3		1			2 2	1201	C6.4	8375
06 06	1345 1508	1440 1511	14400	2+	1					1	1347	C1.2	
06	1848	1850	1552 1904	2- 1-	5 3		1			7	1507	M1.7	8375
06	1950	1958	2010	1	1					2 1	1847 1952	C3.1 C1.6	8375
06	2208	2211	2253	Ż	1					1	2205	C9.4	8375 8375
07	0921	0944	0959	1-	3					3	0941	c2.3	
07	1103	1107	1140	2-	3	1	2			2	1102	M2.4	
07	1445	1450	1455	1-	1					1	1446	C1.1	
07	1749	1759	1857	2+	3					2	1742	C5.3	
08	1056	1110	1132	2-	3					2	1055	c5.9	
08 08	1535 1706	1549	1635	2+	5					4	1539	C6.0	8375
08	2002	1710 2006	1756 2039	2 1+	3 3					5	1704	M2.7	8375
08	2246	2257	2331	2	3					2 2	2001 2237	C4.8 M1.1	8375 8375
09	2113	2116	2138	1	3					2	2111	C4.9	
10	0653	0655	0715	1	1					1	0649	C3.3	8375
10	1330	1332	1345	1-	1					1	1328	C3.5	8375
10	1532	1538	1613	1+	5					4	1527	C6.7	8375
10	1542	1547	1625	2	1					1	1540	M1.8	8375
10 10	1725 1752	1730 1755	1750 1815	1 1	1 1					1	1724	C3.5	
10	1815	1822	1907	1 2+	1					1	1751	C3.3	~~~~
10	2045	2051	2139	2	3					1 2	1817 2043	C3.7 C8.1	8375 8375
11	0406	0408	0444	2-	1					1	0402	M1.0	
11	0453E	0455	0520		i					1	0402	C2.6	
11	0644	0648	0707	1	1					1	0639	C3.8	
11	0710E	0712	0730	1	1					1	0705	C2.5	8375
11 11	0737 0902	0740 0911	0802 0940	1 1	1					1	0733	C3.5	
			0740 	, 	1		1				No flare		
* = no	flare p	atrol.											

		======			Wide	Number o				zzzazzzzze: vpe		******
ay	Start (UT)	Max (UT)	End (UT)	Imp	Spread Index				• •		X-ray Class	NOAA Region

	0952 1012	0956 1015	1026 1019	1+ 1+	3 5	1	1 2	1	2 2	0950 1010	C4.2 M1.1	8375
	1200	1205	1215	1-	1	1	2	'	1	1203	c1.9	
					•							
	0528	0530	0600	1+	1				1	0528	M1.0	8385
	0950	1135	1300	3+	1				1	0950 *	C3.0	
	1218 1515	1220 1520	1255 1530	2 1-	1 1				1 1	1514	C2.1	
	2149	2150	2215	1+	1				1	2155	02.1	8385
	2058	2101	2137	2	1				1	2055	c5.1	
	2119	2120	2140	1	1				1	*		
	2140	2144	2215	2	1				1	*		
	1427	1430	1500	2	1				1	1436	C1.6	8383
	0833	0840	0933	1	1		1			No flare		
	1258	1314	1400	2-	5		i		2	1258	C1.2	
	1200	1205	1220	1	1				1	1159	c2.9	
	1545	1610	1632	2+	1				1	No flare	_	
•	2012	2014	2100	2	3				2	2009	C7.9	
, ,	2150 2311	2156 2317	2243 2357	2+ 2	3 3				2 2	2144 2307	C4.9 C4.5	
		1055	1110						1	1044	c1.0	
	1045 1236	1252	1343	1 1	1 1		1		I	No flare	CI.0	
ł	1520	1524	1550	1+	1				1	1517	C2.5	
	0637	0640	0656	1	1				1	0634	C2.2	
	1020	1030	1053	1	1		1		•	*		
	1125	1135	1145	1	1				1	1125	C1.1	
	1613	1618	1639	1	5				2	1548	C3.0	
2	0634	0640	0739	2+	3		1		1	0630	X3.7	
<u>}</u>	0913	0938	0951	2	1 3		1		1	* 1002	C1.6	
2	0956 1144	1006 1147	1036 1157	1 1	1		1 1		1	No flare	01.0	
2	1217	1227	1304	ź	3		1		3	1215	C8.8	
2	1240E	1305	1400	2+	1		•		1	No flare		
2	1420	1427	1438	1-	5 5				2	1421	C1.6	
2	1440	1444	1459	1-					5	1439	C2.5	
2	1609	1614	1735	3-	3				3	1610	X2.5	
2	1615 1830	1627 1836	1727 1926	2+ 2	5 3				4 5	1610 1828	X2.5 M1.0	
2	2141	2212	2311	3-	3				3	2140	M1.8	
5	0634	0645	0742	2+	3		1		1	0628	X2.2	8384
5	0829	0836	0856	1	1		1		-	No flare		
5	1030	1036	1054	1-	3		1		2	1028	C3.8	
5	1103	1107	1116	2	5	1	2	1	3	1059	M3.1	
ł	0210	0216	0300	2+ 1+	1				1	0207	X1.0	
÷	0842 1025	0850 1030	0912 1035	1+ 1-	3 1				2 1	0848 1026	C3.4 C2.3	
•	1235	1240	1245	1-	1				1	1233	c2.3	
•	2212	2217	2247	2-	3				2	2209	C8.4	8395
i	0555	0600	0623	1+	1				1	0550	C2.7	8395
5	1318	1323	1336	1-	5				6	1317	C4.5	
5	1359 2050	1404 2102	1426 2145	1+ 2+	5 1		1		6 1	1358 2051	C6.4 C2.9	
							4					8705
5	1007 1026	1020U 1037	1114 1047	1 1	1 3		1		2	1026 1026	C4.0 C4.0	8395 8395
5	1320	1330	1340	1	1				1	1319	C1.6	6660
5	1656		1815	2+	1				1	1710	C1.2	

* = no flare patrol.

•

					Wide	Number of	- Stat	tion R	eport	s by T	VDe		
_	Start	Max	End		Spread				LF-		Flare	X-ray	NOAA
Day	(UT)	(UT)	(UT)	Imp	Index	SWF	SEA	SPA	SPA	SES	(UT)	Class	Region
27	0722	0737	0824	2+	1						0721	M1.6	
27	1050	1059	1110	1	3					ż	1048	C2.6	8395
27	1515	1540	1615	2+	1					1	No flare	02.0	1990
27	1550	1555	1600	1-	1					1	1549	C1.2	
27	1824	1827	1840	1-	1					1	1818	c2.4	8395
8	0535	0544	0707	3-	1					t	0454	X3.3	
8	1524	1530	1550	1+	1					1	No flare	Y2.2	
8	1722	1727	1830	2+	3					ż	1723	C5.1	
8	1814	1817	1840	1	1					ī	1824E	1	8395
8	1845	1850	1925	2	1					i	1824E		8395
9	0540	0545	0620	2	1					1	No flare		
9	0635	0638	0654	1-	1					1	0626	C2.8	
9	1125	1130	1140	1 -	1					1	1124	C1.6	
0	1015	1017	1030	1-	1					1	1012	C3.7	

* = no flare patrol.

OBSERVATORIES REPORTING FOR NOVEMBER 1998

		╶─── ₩₩ ₩₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	*=================
Banning, California, USA	SES	Nerja, Spain	SES
Cambridge, England, UK	SES	Panska Ves, Czech Republic	SES, SEA, SW
Columbia City, Indiana, USA	SES	Perth, Australia	SES, SEA, SWI
Edenvale, Rep of S. Africa	SES	Rochester, New Hampshire, USA	SES
louston, Texas, USA	SES	Sun City Center, FL, USA	SES
ludson, Ohio, USA	SES	Tucson, Arizona, USA	SES
oniz. Switzerland	SES	Upice, Czech Republic	
arlboro, Massachusetts, USA	SES	oproe, ezecir kepublite	SEA

Observations are not necessarily continuous.

124 Nov 98

(DBSERVATION			E١	/ENT			FREQUE	ENCY	
_	Start End		Start	End	Spectral		Int	Lower	Upper	Remarks
Jay	(UT) (UT)	Sta	(UT)	(UT)	Class	Remarks	(1-3)	(MHz)	(MHz)	
01	0000 0730	CULG								
	0000 0748	HIRA								
	0708 1420	ONDR				-				
	0703 1420	POTS	1022.6	1022.7	III	В	1	1100	160	
		POTS	1122.3	1124.3	III	G	2	1100	225	
		POTS	1232.0	1232.6	III	G	3	40X 53U	225 66U	
		SVTO POTS	1232.0 1233	1232.0 1411		s	1 1	130	1700	
	2020 2400	CULG	2150.0	2151.0	111	G	1	20	100	
	2020 2400	CULG	2344.0	2346.0	III	G	3	18x	200	
		LEAR	2344.0	2346.0	III	-	3	30	80	
		PALE	2344.0	2346.0	V		2	25	75	
	2055 2400	HIRA	2344.7	2345.7	111	G	3	25X	50X	
02	0000 0747	ILTOA								
02	0702 1418	HIRA POTS	0708	1418 U	I	S	2	110U	350	
	ITIV	LEAR	0715.0	0717.0	in	-	2	30	80	
		SVTO	0715.0	0717.0	111		2	35	73	
		POTS	0715.5	0716.7	III	G	2	40X	275	
	0000 0740	CULG	0716.0	0717.0	III	G	2 2	23	110	
		POTS	0722.8	0722.9	111	В	2 2	120	1700	
		POTS	0748.7	0750.5	UNCLF		2	40X	225	
		LEAR	0749.0	0750.0	III		2	30	80	
		SVTO	0749.0	0751.0	111		2	35	76	
		POTS	0827.0	0827.2	III	B	1	1100	1700	
		POTS	0924.9	0925.1	111	G,U	2	2000	375	
		POTS	0925.2	0925.6 1038.7	111	G,U C	2 2	120 40X	170U 170U	
		POTS POTS	1036.5 1226.3	1226.4		G B	1	1100	1700	
		POTS	1348.1	1349.1	111	G	ź	40X	225	
		POTS	1355.8	1418 U	IV	P	3	40X	800x	
		SGMR	1356.0	1402.0	v		2	30	80	
		SVTO	1356.0	1359.0	v		2	35	85	
	0710 1418	ONDR	1357.0	1412.1	DCIM		2	2000X	4375X	
		POTS	1358.7	1359.4	II	UE	3	50	900	
		SGMR	1404.0	1409.0	111		2	30	60	
		POTS	1413.1	1414.1	III	GG	3	40X	1700	
		SGMR	1448.0	1449.0	III	-	1	30	80	
	2020 2400 2056 2400	CULG HIRA	2025.0	2026.0	111	G	2	35	100	
03	0000 0746	HIRA	0013.0	0019.0	111		2	30	80	
		LEAR PALE	0013.0	0019.0	III		1	49	54	
		LEAR	0125.0	0125.0	111		1	30	60	
	0712 1415	ONDR	0.2210		•••				~~	
	0707 1405	POTS	0720.9	0721.1	III	B,RS	2	120	160	
		POTS	0817	0858	I	S,W	1	110U	275	
		POTS	0817.2	0817.3	111	B	1	1100	225	
		POTS	0819.9	0820.1	III	B	1	110U	225	
		POTS	1350	1405	I	s,W	1	155	1700	
	2057 2400	HIRA								
	2020 2400	CULG	2134.0	2137.0	111	G	1	28	280	
		CULG	2329.0	2330.0	III	В	1	27	170	
04	0000 0745	HIRA								
		POTS	0702 E	1420 U	I	S,C,DC	3	40X	400	
		POTS	0702 E	1420 U	III	N	1	1100	1700	
	0700 4/00	POTS	0702 E	1420 U	111	N	2	40X	900	
	0702 1420	POTS	0702 E	1420 U	111	N	1	40X	90U	
		POTS	0719.5	0724.3		GG	2	40X 30	300 65	
	0000 0740	LEAR CULG	0721.0 0721.0	0722.0 0723.0		G	1 1	30 23	120	
	0000 0740	CULG	0721.0	0723.0	111	6	1	170	310	
		POTS	0736.2	0736.9	III	G	ź	1100	160	
		LEAR	0817.0	0915.0	CONT	-	1	30	80	
		POTS	0817.6	0818.5	111	G	ż	40X	300	
		POTS	0843.4	0845.4	III	G	3	40X	250	
		SVTO	0924.0	1027.0	CONT		2	64	85	

125 Nov 98

NOV	EMBER	1998
-----	-------	------

1		VATION				VENT			FREQU	ENCY	
hav		t End (UT)	\$+~	Start	End	Spectra		Int	Lower	Upper	Remarks
Uay	(01)	(01)	Sta	(UT)	(UT)	Class	Remarks	(1-3)	(MHz)	(MHz)	
04			POTS	1000.9	1004.3	III	G	 ว	20011		
			POTS	1106.9	1107.2	III	G	2	2000	650 750	
			SVTO	1119.0	1132.0	III		2 3	2000	350	
			POTS	1119.5	1132.4	III	N CC C	37	35	85	
			SGMR	1129.0	1130.0		GG,C	3	40X	350	
			SVTO	1132.0	1200.0	III CONT		1	350	600	
			POTS	1204.5	1205.2		00	2	60	85	
	0714	1412	ONDR	1229.4	1232.4		GG	3	50	650	
	0.14	1416	POTS	1232.6		DCIM	G	1	2060	4365	
			SGMR	1234.0	1235.1 1235.0		G	3	40X	150	
			POTS	1247.7	1250.3	111		1	30	60	
			POTS	1316.6	1317.2		G	3	50	350	
			POTS	1353.0	1353.2	111	G,RS	3	40X	360	
			SGMR	1414.0	1420.0	111	G	3	1100	350	
			SGMR	1522.0		111		1	30	55	
					1522.0	111		1	30	80	
			SGMR	1547.0	1549.0	V		2	30	80	
			SGMR	1622.0	1625.0	V		1	30	80	
			SGMR	1647.0	1649.0	V		2	30	80	
	2020	2400	SGMR	1722.0	1725.0	V	_	1	30	80	
	2020	24UU	CULG	2020.0E	2400.0D	III	S	1	20	90	
			PALE	2035.0	2336.0	III		1	25	40	
			CULG	2047.0	2048.0	III	G	2	30	180	
			PALE	2047.0	2049.0	111		1	25	50	
			CULG	2053.0	2400.0D	I	S	1	110	170	
			PALE	2146.0	2148.0	III		2	25	55	
			CULG	2147.0	2148.0	111	G	2	20	540	
	2058	2400	HIRA	2147.0	2148.1	111	G	1	30	50X	
			LEAR	2247.0	2248.0	III		1	30	67	
			PALE	2247.0	2247.0	III		1	31	35	
			PALE	2249.0	0102.0	CONT		1	25	34	
			LEAR	2252.0	1019.0	CONT		1	30	67	
			LEAR	2351.0	2351.0	III		2	30	64	
-								-		04	
5			CULG	0000.0E	0100.0	I	S	1	110	170	
	0000	0740	CULG	0000.0E	0125.0	111	S	1	20	90	
			CULG	0048.0	0048.0	111	В	1	65	880	
			LEAR	0050.0	0102.0	III		3	30	80	
			PALE	0050.0	0102.0	III	N	3	25	75	
			CULG	0051.0	0053.0	111	G	3	18x	360	
(0000 (0744	HIRA	0051.0	0052.3	III	Ğ	3	25X	50X	
			CULG	0102.0	0103.0	111	G	2	25X 18X		
			CULG	0126.0	0126.0	111	B	3	18X 18X	180	
			CULG	0126.0	0740.0D	III	S	1		180	
			LEAR	0126.0	0126.0	III	•	3	20	180	
			PALE	0126.0	0203.0	III	N	3	30	80 75	
			HIRA	0126.2	0126.4	III	B		25 25 V	75 50V	
			CULG	0140.0	0142.0	III	в G	1	25X	50X	
			LEAR	0140.0	0141.0	III		2	18X	180	
			HIRA	0141.0	0141.1	III	В	3	30 25v	80	
			LEAR	0147.0	0149.0	V	U	1	25X	50X	
			HIRA	0147.8	0148.3	III	Ð	3	30	80	
			CULG	0147.8	0140.5		8	3	25X	50X	
			CULG	0202.0	0203.0	III	G	3	18X	180	
			LEAR	0202.0	0203.0		G	3	18X	180	
			HIRA	0202.0	0203.3	III	N	3	30	80	
			CULG	0205.0		111	B	2	25X	50X	
			PALE		0306.0	111	GG	3	18X	750	
				0255.0	0303.0	111	_	3	25	75	
			HIRA	0255.7	0256.0		B	1	25X	50X	
			HIRA	0259.0	0300.0		G	3	25X	50X	
			HIRA	0301.5	0303.4		G	3	25X	50X	
			CULG	0409.0	0419.0		GG	3	18X	350	
			HIRA	0409.3	0413.3	III	G	2	25X	50X	
			CULG	0446.0	0500.0		GG	3	18X	230	
			HIRA	0446.5	0448.0		G	2	30	50X	
			HIRA	0452.3	0453.1		G	3	30	50X	
			HIRA	0457.3	0459.1		G	3	30	50X	
			CULG	0538.0	0539.0		G	2	18x	220	
							-		100	6.6.14	
			SVTO	0538.0	0538.0	111		2	35U	610	

						OVEMBE	IR 199				
(DBSERVAT			Ctont	ENd EN	/ENT Spectral	Event	Int	FREQUE Lower	NCY Upper	Remarks
av	Start E (UT) (Sta	Start (UT)	(UT)	Class	Remarks	(1-3)	(MHz)	(MHZ)	Kellial Ko
_	••										
5			CULG	0554.0	0557.0	III	G	2 2	18X 36	250 61	
			SVTO	0554.0 0554.2	0554.0 0554.4		В	1	40	50X	
			HIRA CULG	0554.2	0554.4	III	G	3	18X	800	
			SVTO	0614.0	0629.0	111	N	3	35	85	
			HIRA	0614.7	0615.5	III	G	3	30	50X	
			CULG	0628.0	0629.0	111	G	3	18X	600	
			SVTO	0645.0	0645.0	III	-	2	36	45	
			POTS	0702 E	1420 U	III	N	1	40X	900	
			POTS	0702 E	1420 U	111	N	1	1100	1700	
			POTS	0702 E	1420 U	III	N	2	40X	90U	
	0702 14	20	POTS	0702 E	1420 U	I	s,c,DC	3	40X	400	
			POTS	0704	1420 U	III	N	2	1100	1700	
			SVTO	0709.0	0928.0	CONT		2 2 3	35	45	
			CULG	0721.0	0721.0	III	В	2	20	160	
			LEAR	0721.0	0721.0	III		3	30	80	
			SVTO	0721.0	0721.0	111	_	2 3	35	82	
			POTS	0721.1	0721.3	III	G	3	40X	1700	
			POTS	0721.3	0721.6	V		3	40X	50	
			LEAR	0758.0	0804.0	III		3	30	80 85	
			SVTO	0758.0	0937.0	III	N	3 3	35 40X	85 325	
			POTS	0758.2	0802.0	III	G	з З	40X 800X	325 1505	
	0716 14	12	ONDR	0803.0	0808.2	DCIM	GG,SP	3	40X	400	
			POTS	0803.1	0803.6		G	2	300	400 800X	
			POTS	0805.6	0806.1 1019.0	DCIM III	N	2	30	80	
			LEAR POTS	0824.0 0828.6	0840.1	III	GG	3	40X	750	
			SVTO	0839.0	0840.0	111	44	3	35	85	
			ONDR	0839.1	0847.4	DCIM	GG,SP		800X	1200	
			POTS	0840.1	0840.8	v	6470	3 2 3 3 3	40X	60	
			POTS	0844.6	0845.5	DCIM		2	350	800X	
			ONDR	0900.4	0901.3	DCIM	GG,SP	3	800X	1320	
			POTS	0908.3	0908.6	III	G	3	40X	1700	
			POTS	0918.2	0918.6	III	В	3 3	40X	1700	
			ONDR	0919.1	0921.5	DCIM	GG,SP	3	800X	2000X	
			POTS	0931.6	0932.0	III	G	3	40X	275	
			LEAR	0950.0	1000.0	III		3	30	80	
			SVTO	0950.0	1001.0	111	N	3	35	85	
			POTS	0950.6	1001.9	111	GG,C,RS	3	40X	450	
			POTS	0951.2	0952.1	V		3	40X	65	
			ONDR	0956.4	0959.0	DCIM	GG	2	800X	1280	
			POTS	1008.6	1012.5	DCIM		2	400	800X	
			SVTO	1016.0	1043.0	III	N	3	35	85	
			POTS	1016.6	1017.1	111	G	3	40X	275	
			POTS	1038.2	1039.6	DCIM		2	400	700	
			POTS	1042.2	1155.3	III	GG,C	3	40X	500	
			SVTO	1051.0	1136.0	111	N	3	35 40X	85 1700	
			POTS	1058.0	1058.6		G	3 1	2070	4365X	
			ONDR	1108.3	1109.4	DCIM	G	1	2070 40X	250	
			POTS	1108.3 1134.9	1114.4 1152.1	III	GG,C	2	40X 40X	800X	
			POTS				GG,C N	r r	30	80	
			SGMR	1135.0 1137.0	1149.0 1150.0	III	N	ר ד	35	85	
			SVTO POTS	1137.0	1139.0	V	14	3 3 3 3 3 3	40X	65	
			POTS	1146.1	1147.1	v		3	40X 40X	65	
			POTS	1236.0	1236.4	III	В	3	40X	1700	
			SGMR	1236.0	1236.0	111	-	1	30	60	
			SVTO	1236.0	1314.0	111	N	3	35	85	
			POTS	1251.5	1251.7	DCIM		2	550	680	
			POTS	1255.0	1316.2	III	GG,C	3	40X	550	
			SGMR	1255.0	1602.0	111	N	3	30	80	
			POTS	1331.1	1340.9	111	GG	2 3 3 3 3	40X	800X	
			SVTO	1332.0	1341.0	v		3	35	85	
			SGMR	1334.0	1341.0	v		3	30	80	
			ONDR	1334.2	1335.1	DCIM	G	2	2000X	4365X	
			ONDR	1334.4	1335.5	DCIM	G	2	800X	20007	
			POTS	1335.3	1337.2U	v		3	40X	70	
			SVTO	1359.0	1401.0	III		3	35	85	
			POTS	1359.1	1405.4	111	G	3	40X	600	

.

(OBSER\ Start	ATION		Chant		EVENT	_ .			JENCY	
Day		(UT)	Sta	Start (UT)	End (UT)	Spectra Class	l Event Remarks	Int (1-3)	Lower (MHz)	Upper (MHz)	Remarks
)5			SVTO	1441.0	1442.0	111		2	36	82	
			SGMR	1735.0	1743.0	V		2	30	80	
			PALE	1740.0	1744.0	111		1	25	60	
			PALE	1823.0	1832.0	III		3	25	75	
			SGMR	1823.0	2108.0	III	N	3	30	80	
			PALE	1846.0	2314.0	III	N	3 2	25	70	
			SGMR	1950.0	1954.0	II		1	30	80	ESS 1000
			PALE	1951.0	1957.0	II		ż	25	75	ESS 0900
			PALE	2010.0	0337.0	CONT		1	25	55	200 0700
	2015	2400	CULG	2015.0E	2142.0	IV		2	25	300	
			CULG	2017.0	2037.0	III	N	2	18X	180	
			CULG	2103.0	2126.0	III	N	1	18X	150	
			CULG	2150.0	2314.0	111	N	1	18X	180	
			LEAR	2219.0	2252.0	111	N	2	30	80	
			CULG	2220.0	2221.0	111	G	2	18X	180	
	2059	2400	HIRA	2220.0	2220.5	III	G	1	25X	50X	
			CULG	2311.0	2315.0	III	GG	2	20	270	
			LEAR	2311.0	0100.0	111	N	2	30	80	
			LEAR	2322.0	0658.0	CONT		1	30	75	
			CULG	2348.0	2350.0	III	G	1	20	90	
			CULG	2359.0	2359.0	III	В	1	20	90	
6	0000	0740	PALE CULG	0006.0 0007.0	0016.0 0008.0	111	<u>,</u>	2	25	55	
	0000		HIRA	0007.1		III	G	2	18X	170	
	0000	0000	CULG	0015.0	0007.3 0016.0	III	B	1	25X	50X	
			HIRA	0015.6	0015.9	III	G	2	18X	170	
			CULG	0034.0	0036.0	III	B	1	25X	50X	
			CULG	0044.0		III	G	1	20	150	
			CULG	0159.0	0048.0 0200.0	111	G	1	18	100	
			LEAR	0159.0	0159.0	III	G	2	18X	130	
			PALE	0159.0	0159.0	III		3	30	80	
			LEAR	0238.0	0252.0			1	25	75	
			PALE	0238.0	0243.0		N	3	30	80	
			HIRA	0238.8	0239.3	111 111	<u>^</u>	2	25	75	
			CULG	0239.0	0243.0	111	G GG	2	25X	50X	
			HIRA	0241.5	0243.1	III	G	3	18X	300	
			CULG	0250.0	0253.0	III	G	3 2	25X	50X	
			CULG	0305.0	0640.0	I	S	1	20	180	
			CULG	0317.0	0338.0	İII	N	1	60 23	140	
			CULG	0436.0	0438.0	III	G	1		150	
			CULG	0451.0	0456.0	III	G	2	20	90	
			CULG	0516.0	0534.0	111	N	1	18X	140	
			CULG	0641.0	0705.0	III	N	2	20 18	180 180	
			LEAR	0641.0	0650.0	III		3	30		
			SVTO	0641.0	0704.0	III	N	2	35	80 85	
			LEAR	0658.0	0704.0	III			30 30	85	
(0702 1	102	POTS	0702 E	1102 U	1	S,C,DC	2 2	30 110U	80 600	
		-	POTS	0704.1	0704.5		G	2	40X	400	
			POTS	0715.9	0716.2	III	G	2	1100	90U 225	
			LEAR	0747.0	1020.0	CONT	-	1	30	225 60	
			POTS	0747.1	0747.5	III	G	1	40X	65	
			LEAR	0802.0	0803.0	111	-	ź	30	80	
			SVTO	0802.0	0824.0	111	N	2	35	85	
			POTS	0802.2	0803.2	III	GG	3	40X	400	
			LEAR	0817.0	0841.0	III	N	3	30	400	
			POTS	0817.3	0841.9	111	GG,C,P	3	40X	400	
			POTS	0829.1	0832.10	DCIM		2	350	400 800X	
			SVTO	0830.0	0841.0		N	3	35	85	
0	718 1	409	ONDR	0830.4	0831.2	DCIM	G	2	2000x	4365X	
			ONDR	0830.5	0831.2	DCIM	G	2	800X	4365X 2000X	
			SVTO	0903.0	0938.0		N	3	35	85	
			POTS	0903.2	0918.6		 GG,C,U	3	40x	800X	
			LEAR	0908.0	0913.0	III	/-/-	3	30	80	
			ONDR	0909.5	0910.0	DCIM		2	800X	2000X	
			ONDR	0909.5	0910.1		G	2	2000X	4365X	
			POTS	0925.7	0938.1		GG	3	2000X 40X	4365X 500	
			SVTO	1027.0	1031.0	Ш		1	35	85	

SOLAR RADIO EMISSION Spectral Observations

NOVEMBER 1998

	OBSERV	ATION				EVENT			FREQUE		
	Start			Start	End	Spectral	Event	Int	Lower	Upper	Remarks
ay	(UT)	(UT)	Sta	(UT)	(UT)	Class	Remarks	(1-3)	(MHz)	(MHz)	
6			SVTO	1106.0	1110.0	111		3	35	85	
			SVTO	1106.0	1110.0	v		3	35	85	
			ONDR	1107.1	1110.3	DCIM	GG	2	800X	1985	
			SVTO	1203.0	1215.0	III	N	3	35	85	
			SGMR	1204.0	1215.0	III	N	3	30	80	
			ONDR	1204.1	1204.3	DCIM	G	2	2000X	4365X	
			ONDR	1204.1	1205.5	DCIM	G	2	800X	2000X	
			SGMR	1302.0	1316.0	III	Ň	2 2	30	80	
			SVTO	1311.0	1437.0	111	N	3	35	85	
			SVTO	1510.0	1511.0	v		ž	40	85	
			PALE	1754.0	1754.0	111		1	30	55	
			SGMR	1754.0	1755.0	111		ź	30	60	
				1835.0	1919.0	111	N	2	25	75	
			PALE				n	1	25	45	
			PALE	1955.0	1955.0	111			25	75	
			PALE	2100.0	2103.0	v.	•	1			
	2015	2400	CULG	2101.0	2103.0	III	G	3	18X	240	
			PALE	2107.0	2107.0	III	_	1	25	60	
			CULG	2108.0	2108.0	III	В	2	20	180	
			PALE	2126.0	2237.0	111	N	3	25	75	
	2100	2400	HIRA	2126.8	2127.5	III	G	1	30	50X	
			CULG	2127.0	2129.0	III	G	2 2	18X	130	
			CULG	2146.0	2205.0	III	N	2	18X	180	
			CULG	2207.0	2210.0	111	G	3	18X	1000	
			LEAR	2207.0	2214.0	111		3	30	80	
			HIRA	2207.8	2208.8	III	G	3 3 2 3	25X	50X	
			CULG	2212.0	2213.0	III	G	2	18	150	
			CULG	2212.0	2216.0	II	FN,H	3	30	80	
			CULG	2212.0	2216.0	II	SH H	2	60	170	ESS 1000
			CULG	2229.0	2310.0	111	N	1	20	180	
			LEAR	2237.0	2237.0	III		1	30	80	
			CULG	2318.0	2318.0	111	в	ż	18X	270	
			LEAR	2318.0	2318.0	111	0	3	30	80	
					2318.0	III		2	25	75	
			PALE	2318.0 2318.1	2318.3	111	В	1	25x	50X	
			HIRA				D	3	30	80	
			LEAR	2328.0	2332.0	111		3	25	75	
			PALE	2328.0	2332.0	V	•	3			
			CULG	2329.0	2332.0	III	G	3	18X	1000	
			HIRA	2329.1	2330.3	111	G	3	25X	50X	
			CULG	2333.0	2334.0	III	G	1	140	600	
			LEAR	2339.0	2352.0	II		1	30	80	ESS 1200
			PALE	2339.0	2341.0	II		1	37	51	ESS 0800
			CULG	2340.0	2344.0	11	FN	1	30	50	
			CULG	2340.0	2347.0	11	SH	2	45	100	ESS 550
			CULG	2359.0	2359.0	111	В	2	30	230	
			LEAR	2359.0	0006.0	111		2	30	80	
			PALE	2359.0	0006.0	111		1	30	60	
7	0000	0740	CULG	0001.0	0006.0	111	G	2	18	180	
			LEAR	0108.0	0112.0	III		3	30	80	
			CULG	0109.0	0109.0	111	G	1	20	90	
			PALE	0110.0	0112.0	III		3	25	75	
			CULG	0111.0	0112.0	111	G	3	18X	180	
	0000	0742	HIRA	0111.0	0111.5	III	В	3 3 3	25X	50X	
			CULG	0139.0	0140.0	III	G	3	20	250	
			LEAR	0139.0	0140.0	III	_	3	30	80	
			PALE	0139.0	0139.0	111		1	35	70	
			HIRA	0139.3	0139.5	III	В	1	30	50X	
			CULG	0158.0	0159.0	111	B	3	18	300	
				0158.0			0	3	30	80	
			LEAR		0159.0			2			
			PALE	0158.0	0158.0	111	D	2	35	70 50V	
			HIRA	0158.1	0158.3	III	В	1	30	50X	
			CULG	0237.0	0314.0	III	N	1	20	180	
			LEAR	0237.0	0237.0	III		2	30	80	
			CULG	0245.0	0247.0	III	G	2 3	18	520	
			LEAR	0245.0	0247.0	v		3	30	80	
			LEAR	0249.0	0250.0	111		2	30	80	
			LEAR	0308.0	0310.0	III		3	30	80	
			HIRA	0309.6	0309.8	111	В	1	25X	50X	
			CULG	0310.0	0310.0	III	В	2	18X	140	

129 Nov 98

	BSERV/			C#+		EVENT			FREQ	UENCY	
	Start (UT)		Sta	Start (UT)	End (UT)	Spectra		Int	Lower	Upper	Remarks
		(01)	5.4		(01)	Class	Remarks	(1-3)	(MHz)	(MHz)	
07			LEAR	0515.0	0838.0	III	N	3	30	80	- <u> </u>
			CULG	0517.0	0740.OD	III	N	2	18	200	
			CULG	0545.0	0548.0	III	G	3	18x	180	
			LEAR	0545.0	0548.0	III	-	3	30	80	
			HIRA	0545.2	0547.8	III	G	1	40	50X	
			CULG	0600.0	0740.0D	ī	s	1	80		
			SVTO	0609.0	0712.0	îп	Ň	ź	35	160	
			CULG	0653.0	0654.0	III	G	3		85	
0	720 1	405	ONDR	0944.0	0945.3	DCIM	G		18X	240	
			ONDR	1104.3	1106.3	DCIM	G	1	2665	4375x	
			ONDR	1104.4	1107.3	DCIM	G	2	2000X	4375X	
			ONDR	1214.4	1216.0	DCIM		2	800X	2000X	
			ONDR	1215.5	1216.1	DCIM	GG,SP G	3	800X	1040	
			SGMR	1405.0	1416.0	III		1	2265	43 <u>75</u> x	
			SGMR	1656.0	1657.0	v	N	2	30	55	
			SGMR	1730.0	1902.0		1 1	2	30	80	
			PALE	1738.0		III	N	2	30	80	
			PALE	1752.0	1739.0	111		1	27	55	
			PALE	1853.0	1758.0	111		2	25	65	
					1903.0	III		2	27	55	
20	015 24	600	PALE	1959.0	1959.0	III		1	27	45	
20	012 24	+00	CULG	2023.0	2358.0	III	N	2	18X	300	
			PALE	2025.0	2026.0	III		2	27	55	
			PALE	2042.0	2043.0	111		2	27	45	
			PALE	2058.0	2158.0	111	N	3	25	75	
			CULG	2122.0	2124.0	111	G	3	18X	600	
			CULG	2124.0	2126.0	V		1	18	90	
			PALE	2254.0	2254.0	III		1	25	50	
			LEAR	2255.0	2255.0	ĪII		2	30	80	
			LEAR	2315.0	2324.0	111		2	30	80	
			LEAR	2330.0	2335.0	111		2 2	30	80	
			PALE	2334.0	2342.0	III		2	25	75	
			CULG	2341.0	2342.0	III	G	3	18x	200	
			LEAR	2341.0	2342.0	III	-	3	30		
			LEAR	2348.0	2348.0	III		1		80	
			LEAR	2358.0	2358.0	111		3	35	55	
						•••		3	30	80 [,]	
8 00	00 07	'40	CULG	0005.0	0052.0	III	N	1	20	400	
			LEAR	0009.0	0012.0	III	ru -		20	180	
			CULG	0019.0	0022.0	111	G	1	30	65	
			LEAR	0019.0	0022.0	III	0	2	18X	400	
			PALE	0021.0	0021.0	III		3	30	80	
			LEAR	0034.0	0035.0			1	25	50	
			LEAR	0051.0	0051.0	III		2	30	80	
			CULG	0148.0		[]]	•	1	30	60	
			LEAR	0148.0	0152.0	III	G	3	18X	620	
			PALE		0159.0	III	N	3	30	80	
				0148.0	0151.0	III		1	25	75	
			CULG	0155.0	0253.0	111	N	1	20	180	
			LEAR	0219.0	0230.0	III	N	2	30	80	
			LEAR	0250.0	0258.0	III		2	30	80	
			CULG	0336.0	0338.0	111	G	1	20	90	
			LEAR	0336.0	0345.0	III		2	30	80	
			CULG	0343.0	0345.0	III	G	3	18x	500	
			LEAR	0443.0	0444.0	III		2 3 1	35	63	
			LEAR	0451.0	0452.0	III		3	30	80	
			CULG	0452.0	0452.0		В	3 2	18X	500	
			LEAR	0616.0	0617.0	111		1	30	65	
			LEAR	0629.0	0636.0	111		2	30	65	
			CULG	0630.0	0635.0		G	1	18	440	
			SVTO	0632.0	0634.0	111	-	2	35		
			CULG	0649.0	0649.0		в	2		50	
			LEAR	0649.0	0649.0	III	~		20	120	
			SVTO	0649.0	0649.0	III		2	30	80	
			LEAR	1014.0	1014.0			1	61	74	
			ONDR	1208.2		III		2	30	65	
072	22 140		ONDR	1208.2	1211.1	DCIM		1	800X	2000X	
415	-+** :**		SGMR		1208.3	DCIM			2000X	4375X	
				1250.0	1250.0	III		1	30	80	
			SGMR	1253.0	1255.0	111		1	30	80	
			SGMR	1312.0	1319.0	v		2	30	80	
			ONDR	1318.0	1321.2	DCIM	3				

C	BSERV					ENT	. .	•	FREQU		Describe
Day	Start (UT)		Sta	Start (UT)	End (UT)	Spectral Class	Event Remarks	Int (1-3)	Lower (MHz)	Upper (MHz)	Remarks
08			ONDR	1319.2	1321.0	DCIM	G	1	2000X	4375X	
			SGMR	1337.0	1443.0	III	N	2	30	80	
			SGMR	1610.0	1612.0	v		3	30	80	
			PALE	1729.0	1729.0	111		1	29	55	
			PALE	1936.0	1944.0	III		2	27	55	
			SGMR	1936.0	1937.0	III		1	30 30	57 50	
			LEAR	2202.0	2204.0	11I 111		1 2	25	50	
	2045	2/00	PALE	2202.0	2206.0 2206.0	III	G	2	18x	420	
	2015	2400	CULG CULG	2203.0 2338.0	2339.0	III	G	1	55	160	
			LEAR	2348.0	2350.0	III	u	2	30	80	
			CULG	2349.0	2351.0	111	G	2	18x	180	
	2251	2400	HIRA	2349.0	2350.0	III	G	1	25X	50X	
		2100	PALE	2358.0	2358.0	III		1	25	75	
09	0000	0710	HIRA						70		
			LEAR	0140.0	0140.0	III	D	1	39 20	66 90	
	0000	0740	CULG	0140.0	0140.0		В	1	20 30	90 61	
			LEAR	0200.0 0206.0	0206.0 0207.0		G	1 1	20	90	
			CULG		0239.0	III	u	2	30	80	
			LEAR CULG	0238.0 0239.0	0239.0		В	2	20	180	
			LEAR	0259.0	0352.0	III	0	1	30	52	
			CULG	0455.0	0457.0	III	G	1	20	250	
			LEAR	0455.0	0457.0	111	•	2	30	80	
			CULG	0553.0	0555.0	III	G	1	20	180	
			LEAR	0553.0	0555.0	III		2	30	80	
			LEAR	0636.0	0637.0	111		1	30	58	
			CULG	0637.0	0637.0	III	G	1	25	90	
	0718	0858	POTS	0718 E	0858 U	I	s,c	2	110U	300	
	0725	1404	ONDR					-			
			POTS	0744.3	0744.4	111	В	2	1100	160	
			POTS	0758.5	0803.9	111	G	2	40X	325 80	
			LEAR	0801.0	0803.0	. 111		2 2 2 2	30 40X	70	
			POTS	0802.2	0802.7 0804.8	II	UE B	5	40X 40X	325	
			POTS	0804.6 0818.0	0818.0		D	1	30	50	
			LEAR POTS	0818.3	0819.4	III	G	ż	40X	1700	
			POTS	0916 E	1414 U	111	N	1	40X	900	
			POTS	0916 E	1414 U	111	N	i	1100	1700	
	0916	1414	POTS	0916 E	1414 U	I	s,c		1100	400	
	•,		POTS	0939.9	0940.0	111	В	2 2	1100	170U	
			SVTO	0940.0	1024.0	CONT		2	54	85	
			SVTO	1017.0	1018.0	111		2	35	76	
			POTS	1018.3	1018.5	DCIM		2	375	550	
			POTS	1018.4	1018.8	111	G	2	40X	170U	
			POTS	1158.0	1158.2	DCIM		2	2000	325	
			SGMR	1620.0	1635.0	III	N	1	30	75	
			PALE	1835.0	1836.0			2	25U	7013	
			SGMR	1835.0	1837.0	V		2	30 25	80 45	
			PALE	1913.0	1914.0	III		1	25 30	45 50	
	2045	2/00	SGMR	1943.0	1944.0	III		1	30 30	150	
	2015	2400	CULG	2015.0	2230.0	CONT III	G	1	20	90	
	2107	2400	CULG HIRA	2024.0	2025.0	111	9	I	20	,,	
	2103	2400	CULG	2107.0	2113.0	111	G	1	18	180	
			PALE	2348.0	2350.0	III	ŭ	2	25	55	
10	0000	0739	HIRA								
			LEAR	0224.0	0225.0	III		3	30	80	
	0000	0740	CULG	0225.0	0225.0	III	G	2	18X	180	
			CULG	0440.0	0443.0	111	G	1	20	90	
			LEAR	0626.0	0631.0	111	-	2	30	80	
			CULG	0627.0	0627.0	III	B	2	18	530	
		0077	CULG	0631.0	0632.0	111	G	2	18X	130	
	0702	0837	POTS	0702 E	0837 U	I	S	2	1100	450 800V	
			POTS	0707.2	0707.7	DCIM	c	2	700 18X	800X 800	
			CULG	0710.0 0710.0	0711.0 0711.0		G	2 2	30	80	
			LEAR	0110-0	011110	111		Ē	50		

NOVEMBER 1998

131 Nov 98

itart End UT) (UT		Start (UT)	End (UT)	Spectra Class		Int	Lower	Upper	Remarks
	DOTO				Remarks	(1-3)	(MHz)	(MHz)	
		0710.2	0711.1	III	G	3	40X	400X	
	POTS	0710.5	0710.9	DCIM		2	400	800X	
	POTS	0748.5	0748.6	DCIM		1	500	650	
	LEAR	0749.0	0750.0	111		2	30	80	
	POTS	0749.6	0750.4	111	G	3	40X	450	
	POTS	0750.6	0750.8	DCIM		1	400	675	
	LEAR	0808.0	0808.0	III	_	1	38	54	
	POTS ONDR	0815.4 0925.5	0819.2 0934.4	III	G	2	40X	650	
654 1401		0920.1	0931.0	DCIM	GG	1	885	2000X	
225 1307		1225 E	1307 U	DCIM I	S	1	2000X	4385	
322 1420		1322 E	1420 U	I	S	2 2	110U 110U	400	
	POTS	1322.7	1322.8	DCIM	5	1	670	400 720	
	ONDR	1337.4	1343.5	DCIM	GG	ż	1010	1975	
	POTS	1342.2	1343.8	DCIM		2	325	650	
015 2400		2138.0	2400.0D	CONT		1	60	160	
	CULG	2218.0	2221.0	III	G	2	18X	280	
104 2400	HIRA	2218.2	2218.4	III	В	1	25X	50X	
000 0738 000 0740	HIRA	0000 05	001/ 0						
00 0/40	CULG CULG	0000.0E 0400.0	0016.0 0400.0	CONT	n	1	60	160	
	CULG	0424.0	0400.0	III	B	1	40	110	
	LEAR	0424.0	0420.0	III III	G	1	23	90	
	CULG	0428.0	0428.0	III	В	2 1	30 100	75	
	CULG	0431.0	0432.0	111	G	1	18	400 130	
	CULG	0715.0	0718.0	111	G	1	20	70	
	ONDR	0947.0	0947.5	DCIM	G	1	800x	2000x	
29 1359	ONDR	0947.0	0947.3	DCIM		1	2000X	4400X	
12 1401	POTS	1331	1401 U	I	S	1	130	250	
	POTS POTS	1332.1	1332.8	III	G	1	140	170U	
	POTS	1333.6 1339.5	1333.8 1339.6	DCIM		2	400	500	
	SGMR	1347.0	1348.0		В	1	130	160	
	SGMR	1502.0	1504.0	III		1	30	45	
	LEAR	2320.0	2328.0	111		2	30 30	80 80	
	PALE	2320.0	2328.0	111		2 3 2	25	70	
15 2400	CULG	2321.0	2328.0	III	G	2	18	180	
05 2400	HIRA	2325.0	2325.2	III	В	2	25x	50X	
00 0740	CULG	0125.0	0125.0	III	B	1	60	90	
	CULG	0154.0	0154.0	III	В	1	30	90	
	LEAR	0227.0	0228.0	III		3	30	80	
	PALE	0227.0	0228.0	III	_	1	25	75	
00 0738	CULG HIRA	0228.0 0228.1	0228.0 0228.3	111	В	3	18X	600	
	CULG	0239.0	0228.3	III III	B	1	25X	50X	
	LEAR	0301.0	0301.0	III	В	1 1	60 70	90	
	LEAR	0353.0	0354.0	III		1	30 30	46 60	
	CULG	0354.0	0357.0	III	G	1	23	90	
24 1401	POTS	0724 E	1401 U	I	S,C	2	70	400	
31 1356	ONDR				-				
	POTS	0743.7	0744.3	III	G	2	1100	160	
	POTS	0816.7	0816.8	111	В	1	110U	1700	
	POTS POTS	0844.3 0932.3	0844.4	III	B	2	110U	155	
	POTS	0955.4	0932.4 0955.5		B	2	120	135	
	POTS	1029.7	1030.1	III DCIM	В	2	1100	145	
06 2400	HIRA		100011	DOIM		2	250	575	
15 2400	CULG	2156.0	2252.0	111	N	1	20	180	
	CULG	2242.0	2245.0	III	G				
	LEAR	2242.0	2244.0	111		1	30	80	
	HIDA								
0 0737			0000 0	III		1	40	66	
	LEAR								
00 0737 10 0740	LEAR CULG	0008.0	0009.0	III	G	1	30	80	
	LEAR				G N N		30 30 30		
	2400	2400 CULG CULG LEAR	2400 CULG 2156.0 CULG 2242.0 LEAR 2242.0	2400 CULG 2156.0 2252.0 CULG 2242.0 2245.0 LEAR 2242.0 2244.0	2400 CULG 2156.0 2252.0 III CULG 2242.0 2245.0 III LEAR 2242.0 2244.0 III D737 HIRA LEAR 0007.0 0009.0 III	2400 CULG 2156.0 2252.0 III N CULG 2242.0 2245.0 III G LEAR 2242.0 2244.0 III 0737 HIRA LEAR 0007.0 0009.0 III	2400 CULG 2156.0 2252.0 III N 1 CULG 2242.0 2245.0 III G 2 LEAR 2242.0 2244.0 III 1 D737 HIRA LEAR 0007.0 0009.0 III 1	2400 CULG 2156.0 2252.0 III N 1 20 CULG 2242.0 2245.0 III G 2 20 LEAR 2242.0 2244.0 III 1 30 D737 HIRA LEAR 0007.0 0009.0 III 1 40	2400 CULG 2156.0 2252.0 III N 1 20 180 CULG 2242.0 2245.0 III G 2 20 340 LEAR 2242.0 2244.0 III 1 30 80 0737 HIRA LEAR 0007.0 0009.0 III 1 40 66

OBSERVATION EVENT FREQUENCY Start End Spectral Event Upper Remarks Int Lower Start End Day (UT) (UT) Sta (UT)(UT)Class Remarks (1-3) (MHz) (MHz) 13 0147.0 0147.0 CULG III В 1 30 80 18X CULG 0224.0 0224.0 III В 2 140 LEAR 0235.0 0236.0 ш 3 30 80 0236.0 0237.0 2 18 180 CULG III G 0404.0 0631.0 30 LEAR CONT 1 80 CULG 0627.0 0650.0 III Ν 1 20 160 0631.0 LEAR 0627.0 111 2 30 80 0631.0 1 35 50 SVTO 0627.0 III 0641.0 0649.0 2 30 80 LEAR 111 0651.0 3 0701.0 30 80 LEAR III 2 CULG 0652.0 0655.0 ш G 18 90 SVTO 0652.0 0655.0 35 76 III 2 0823.0 0823.0 45 LEAR 1 66 111 30 50 SGMR 1256.0 1256.0 111 1 svto 1256.0 1256.0 35 83 III 1 1341.2 0733 1355 1342.5 2000X 4255 ONDR DCIM 1 ONDR 1341.3 1342.5 DCIM G 1 1045 2000X PALE 2042.0 2042.0 28 45 III 1 70 2015 2400 2042.0 2042.0 18 CULG III В 1 2107 2400 HIRA 2113.0 2116.0 III 2 18X 80 CULG G PALE 2113.0 2114.0 III 1 25 46 0000 0736 HIRA 14 LEAR 0442.0 0446.0 III 1 30 54 0000 0740 0447.0 0442.0 20 160 CULG 111 G 1 LEAR 0501.0 0536.0 I۷ 3 30 80 2 CULG 0502.0 0506.0 III G 18X 230 3 0506.0 0524.0 ESS 650 CULG II SH 35 160 CULG 0506.0 0528.0 FN 3 18X 70 11 CULG 0555.0 0555.0 111 в 1 18 80 0611.0 CULG 0611.0 III в 1 18 on CULG 0627.0 0633.0 2 18X 160 111 G 3 LEAR 0627.0 0632.0 111 30 80 0724.0 2 0656.0 LEAR N 30 III 80 CULG 0657.0 0733.0 N 1 18 120 III 0724 1401 POTS 0728.7 0729.1 III G 2 40X 160 2 POTS 0733.5 0733.8 III G 40X 170U 0735 1354 ONDR 0752.3 0752.8 2 110U 145 POTS III G 0803.6 0803.8 2 325 POTS III G 110U POTS 0817.5 0818.4 2 1100 1700 ш G 0828.0 0837.0 2 30 LEAR III 80 3 POTS 0828.6 0837.3 III GG 40X 300 POTS 0846 1340 III Ν 1 1100 170U 0856.0 0850.0 LEAR 1 40 70 III POTS 0850.1 0856.2 III G 2 40X 170U POTS 0945.0 0945.1 III В 2 1100 140 0955.2 0956.3 2 POTS G 40X 1700 III POTS 1011.6 1012.2 III G 2 40X 170U POTS 1014.1 1014.2 2 40X 65 III В 1022.9 G,P,C 40X POTS 1022.6 2 150 III SVTO 1033.0 1034.0 III 1 35 73 POTS 1033.2 1037.9 GG 2 40X 220 III 1249.4 1249.6 2 POTS III 40X 1700 В 1259.9 POTS 1259.8 III В 2 1100 220 SGMR 1309.0 1310.0 111 1 30 48 1309.7 1310.3 2 40X 1700 POTS III G SGMR 1921.0 1921.0 III 1 30 60 PALE 2038.0 2041.0 111 30 45 1 2038.0 2039.0 30 45 SGMR III 1 2015 2400 CULG 2039.0 2041.0 III G 2 18X 160 2108 2400 HIRA 2238.0 2238.0 20 CULG TII 1 130 R LEAR 2238.0 2238.0 III 1 36 54 15 0000 0736 HIRA 0000 0740 CULG 0000.0 0001.0 III 2 18X 180 G 0149.0 0149.0 LEAR 1 30 45 III

NOVEMBER 1998

1		VATION		0 1 1 1		EVENT			FREQL	JENCY	
Dav.		t End (UT)	C+-	Start	End	Spectr		Int	Lower	Upper	Remarks
Uay	(01)		Sta	(UT)	(UT)	Class	Remarks	(1-3)	(MHz)	(MHz)	
15			LEAR	0214.0	0215.0	111		4		70	
			LEAR	0423.0	0424.0	III		1	30	38	
			CULG	0424.0	0425.0		~	2	30	80	
			POTS	0724 E	1308	III	G	1	18X	120	
			POTS	0724 E		111	N	1	110U	1700	
	0724	1/01			1401 U		N	1	40X	900	
	0124	1401	POTS	0724 E	1401 U	-	S	1	1100	400	
			POTS	0729.2	0729.9	111	G	2	110U	135	
			POTS	0732.3	0732.4	III	В .	2	40X	60	
	0737	1350	ONDR								
			POTS	0813.4	0813.6	111	G	2	110U	1700	
			POTS	1011.7	1011.8	III	В	2			
	2015	2400	CULG	2031.0	2039.0	111	G	1	1100	160	
	2109		HIRA			•••	4	1	20	70	
6	0000	0735	HIRA								
-	0000	0760	CULG	0020.0	0020 0						
		01-10			0020.0	III	В	1	30	90	
			CULG	0040.0	0041.0	111	G	2	18X	70	
			CULG	0304.0	0306.0	III	G	2	25	200	
			CULG	0359.0	0429.0	III	N	2	20	200	
		· ·	CULG	0512.0	0514.0	III	G	2	18	150	
	0656	1352	POTS	0659	1347	I	s	2	1100	400	
			POTS	0710	1352 U	III	N	1	1100		
			POTS	0800.2	0800.8	III	G			1700	
			POTS	0824,8	0825.1	III		3	40X	220	
			POTS	0825.3	0825.7		G	2	40X	220	
			POTS	0823.5		III	G	2	40X	160	
					0831-8	111	B	2	110U	275	
			POTS	0905	1347	III	N	2	110U	1700	
			POTS	1019.1	1019.3	III	В	2	40X	60	
			POTS	1036.5	1039.4	111	GG,C	3	40X	160	
			POTS	1056.7	1057.3	111	G,C	2	1100	300	
			POTS	1117.3	1118.3	111	GG	2 3	40X	1700	
			POTS	1125.8	1128.0	111	G	3			
			POTS	1202.0	1204.5	111	G	7	40X	220	
			ONDR	1202.1	1203.4	DCIM		3	40X	2000	
1	0740 1	1340	ONDR	1202.3	1203.4		G	1	830	2000X	
			POTS			DCIM		1	2000X	4375X	
				1202.5	1202.6	UNCLF		1	675	725	
			POTS	1203.00	1204.2	v		3	40X	70	
			POTS	1233.2	1235.8	III	G	3	40X	170U	
			ONDR	1234.0	1235.2	DCIM	GG	2	800X	2000X	
			POTS	1234.0	1234.9	DCIM		1	400	750	
			ONDR	1234.1	1234.4	DCIM		1	2000X	4375X	
			POTS	1236.9	1238.0	111	GG	2			
			ONDR	1319.3	1321.5	DCIM	G		40X	1700	
			ONDR	1319.3	1321.5	DCIM		1	800X	2000x	
			POTS	1319.5	1323.2		G	1	2000X	4375X	
			POTS	1319.6		III	GG,C	3	40X	550	
					1321.9	DCIM	_	1	400	800X	
	110 2	200	POTS	1325.3	1327.3	111	G	3	40X	350	
			HIRA	2138.8	2139.6	111	G	2	25X	50X	
4	015 2	400	CULG	2147.0	2152.0	III	GG	2	18X	270	
			CULG	2154.0	2154.0	III	G	1	20	90	
			CULG	2158.0	2208.0	11	SH	2	55	90	ESS 400
			CULG	2200.0	2204.0	II	FN	1	28	90 45	E33 400
			CULG	2222.0	2229.0	111	GG	1	20		
							~~		20	260	
	000 0		HIRA								
	000 0		CULG	0221.0	0222.0	111	c				
	-		CULG	0441.0	0441.0		G	1	28	240	
			CULG	0456.0		III	В	1	60	180	
					0503.0	III	G	1	20	180	
			POTS	0724 E	1329	III	N	2	1100	1700	
~			POTS	0724 E	1401 U	111	N	1	1100	1700	
0	724 14		POTS	0724 E	1401 U	1	S	ż	1100	300	
			POTS	0740.9	0741.4	ĪĦ	Ğ	3	85		
0	742 13	348	ONDR			- • •	-	5	60	220	
			POTS	0758.2	0758.8	111	<u>^</u>	~	10		
			POTS	1122.3		III	G	2	40X	250	
					1123.2	III	G	2	40X	65	
			POTS	1205.0	1206.1	III	G	3	40X	170U	
			POTS	1303.7	1304.1	111	G	2	40X		
				170- /				4	407	1700	
-	015 24		POTS CULG	1305.4	1306.9	III	GG	ž	40X	170U 170U	

NOVEMBER 1998

SOLAR RADIO EMISSION Spectral Observations

(DBSERV	ATION			EV	ENT			FREQU		
Date	Start		Sta	Start (UT)	End (UT)	Spectral Class	Event Remarks	Int (1-3)	Lower (MHz)	Upper (MHz)	Remarks
uay	(01)	(UT)	518	(01)		61035	Keinal Ko	(1 27	(1012)	(1,112)	
17	2111	2317	HIRA								
18	0000	0745	CULG								
	0724		POTS	0726	1403 U	I	S	2	110U	350	
	0744	1347	ONDR POTS	0804	1210	111	N	1	110U	1700	
			POTS	0837.4	0843.8	111	GG	2	40X	450	
			POTS	0848	1315	III	N	2	1100	1700	
			POTS	0937.0	0937.4	III	G	2	110U 225	170U 325	
			POTS POTS	1010.0 1054.5	1016.2 1055.5	UNCLF III	G	1 3	40X	325	
			POTS	1128.5	1128.6	III	G	2	1100	1700	
			POTS	1212.0	1213.6	111	G	3	40X	325	
			POTS	1216.6	1216.9	II	SH	2	220	270	
			POTS	1216.7	1216.9	11	F	2 2	135	150	
			POTS	1220.1 1354.5	1221.9 1355.2	II UNCLF	UE	2	120 40X	170U 325	
	2015	2400	POTS CULG	2040.0	2042.0	III	G	2	18X	100	
	2112		HIRA	2040.0	204210	•••	-	-			
			CULG	2155.0	2156.0	III	G	1	25	90	
			CULG	2250.0	2250.0	111	В	1	60	180	
19	0000	0745	CULG	0048.0	0050.0	111	G	1	20	180	
			CULG	0139.0	0139.0	III	В	1	30	9 0	
	0217	0733	HIRA	022/ 0	0271 0	111	G	1	18	180	
			CULG CULG	0224.0 0315.0	0231.0 0315.0		B	1	23	60	
			CULG	0340.0	0344.0	111	G	i	20	90	
			CULG	0415.0	0415.0	III	В	1	30	90	
			CULG	0506.0	0510.0	III	В	1	20	90	
			CULG	0616.0	0616.0	III	B	1	25	45	
	070/	4/07	CULG	0654.0	0655.0 1403 U		G S	1 1	25 150	45 400	
	0724	1403	POTS POTS	0732 0735.7	0735.8	I III	B	2	1100	145	
	0746	1346	ONDR	013311	010210		0				
	•••		POTS	0757.2	0757.3	111	В	2	1100	170U	
			POTS	0814.9	0815.9	III	G	2	40X	160	
			POTS	0823.8	0825.3	III	G	2	40X 40X	375 120	
			POTS POTS	0844.5 0855.2	0844.8 0858.0		B G	2	40X	1700	
			POTS	0924.1	0924.5	UNCLF		2 2	40X	60	
			POTS	0945.1	0945.2	III	В	2	1100	160	
			POTS	0951.6	0951.8	III	B	2	1100	150	
			POTS	1109.2	1109.3	111	B	1	130	170U 170U	
			POTS	1204.9 1306.9	1205.0 1307.1		B B	1 1	120 1100	400	
			POTS POTS	1327.6	1335.6	111	G	3	40X	325	
			POTS	1348.5	1348.6	111	В	1	1100	160	
		2400	CULG	2038.0	2038.0	111	В	1	25	100	
	2113	2400	HIRA	2131.0	2131.0	111	B	1	60	100	
			CULG CULG	2253.0	2253.0	III	B	1	30	90	
			CULG	2300.0	2301.0	111	G	1	60	180	
20	0000	0733	HIRA								
20		0745	CULG	0003.0	0004.0	111	G	1	35	180	
			CULG	0010.0	0011.0	111	G	1	60	180	
			CULG	0018.0	0035.0	11	SH	2	40	130	ESS 400
			CULG	0257.0	0257.0		B	1	20	80 60	
			CULG	0421.0 0547.0	0421.0 0547.0	III III	B B	1 1	23 60	180	
			CULG CULG	0547.0	0745.0D	I	ь S	1	60	140	
			CULG	0650.0	0650.0	in	B	1	23	70	
			CULG	0713.0	0714.0	III	G	3	18X	180	
	0724	1402	POTS	0724 E	1402 U	I	s,c	2	40X	400	
			OUDD								
	0748	1343	ONDR	0045 5	0917 /		C	5	/.0V	000	
		1343	POTS	0812.5 0857.0	0817.4 0903.2		G G	2 3	40X 40X	90U 170U	

•

0	DBSERV			_		VENT			FREQU	ENCY	
Day	Start (UT)		Sta	Start (UT)	End (UT)	Spectral Class	. Event Remarks	Int (1-3)	Lower (MHz)	Upper (MHz)	Remarks
20			POTS	0912.6	0913.2	111	G	2	40X	65	·····
			POTS	0922.1	0922.5	III	G	2	40X	75	
			POTS	0955.9	0956.3	111	В	2	40X	135	
			POTS	1003.7	1010.7	III	GG	3	40X	550	
			POTS	1017.3	1017.7	DCIM		3 2 3	380	680	
			POTS	1017.3	1018.2	III	G	3	40X	360	
			POTS POTS	1046.1 1047.6	1046.8	III	G	3	40X	250	
			POTS	1141.9	1048.3	III	G	3	40X	300	
			POTS	1155.7	1142.2	DCIM		2	260	400	
			POTS	1235.1	1156.9 1243.6	DCIM	~~	2	350	430	
			POTS	1309.4	1309.5	III	GG	3	40X	275	
			POTS	1349.4	1349.6		B G	2	1100	145	
	2015	2400	CULG	2015.0E	2146.0	CONT	G	2 1	270	340	
	2114		HIRA	2012102	214010	CONT		1	60	260	
			CULG	2154.0	2154.0	III	в	2	50		
			CULG	2336.0	2340.0	III	G	1	28	90 90	
			CULG	2356.0	2357.0	111	G	1	60	90 90	
						•••	9	•	00	90	
	0000 (HIRA								
	0000 ()745	CULG	0036.0	0036.0	111	В	1	18	90	
			CULG	0043.0	0045.0	III	G	1	18x	150	
			CULG	0055.0	0056.0	111	G	3	30	180	
			CULG	0448.0	0449.0	III	G	1	23	100	
			CULG	0636.0	0639.0	111	G	3	20	150	
	0738 1	75/	CULG	0649.0	0650.0	111	G	1	23	130	
	0730 4	320	POTS POTS	0738 E 0756.5	1356 U	I	S	1	110U	400	
			POTS		0756.7	III	G	1	160	325	
			POTS	0800.0 0809.7	0808.4 0814.2	III	GG,UG,C	3	40X	450	
			POTS	0831.3	0831.8	III III	GG	2	65	450	
			POTS	0835.5	0835.7		G G	1 1	2000	400	
			POTS	0855	1356 U	III	N	1	2000	275	
			POTS	0858.4	0859.2	III	G	2	1100	1700	
			POTS	0924.1	0924.6	III	G	2	40X 110U	150 275	
			POTS	0939.0	0939.9	DCIM	4	1	2000	275 400	
			POTS	1000.3	1000.6	III	G	2	2000 40X	400 1700	
(0750 1	340	ONDR	1013.4	1014.5	DCIM	-	1	2520	3385	
			POTS	1058.7	1100.0	111	G,U	ź	1100	240	
			POTS	1126.7	1127.5	DCIM	•	2	240	500	
			POTS	1144.6	1148.0	111	GG	3	40X	400	
			POTS	1233.8	1238.1	DCIM		2	2000	400	
			POTS	1334.5	1334.7	III	G,U		135	220	
Ž	2015 2	400	CULG	2043.0	2043.0	III	B	1	40	130	

21		0732	HIRA								
	0000	0745	CULG	0036.0	0036.0	111	В	1	18	90	
			CULG	0043.0	0045.0	111	Ğ	1			
			CULG	0055.0	0056.0	111	G		18X	150	
			CULG	0448.0	0449.0	III		3	30	180	
			CULG	0636.0			G	1	23	100	
			CULG		0639.0	111	G	3	20	150	
	0770	475/		0649.0	0650.0	111	G	1	23	130	
	0738	1356	POTS	0738 E	1356 U	I	S	1	110U	400	
			POTS	0756.5	0756.7	111	G	1	160	325	
			POTS	0800.0	0808.4	111	GG,UG,C	3	40X	450	
			POTS	0809.7	0814.2	III	GG	2	65	450	
			POTS	0831.3	0831.8	III	G	1	2000	400	
			POTS	0835.5	0835.7	111	G	1	2000	275	
			POTS	0855	1356 U	IП	Ň	1	1100		
			POTS	0858.4	0859.2	III	G			1700	
			POTS	0924.1	0924.6			2	40X	150	
			POTS			III	G	2	110U	275	
				0939.0	0939.9	DCIM	-	1	2000	400	
	0750	17/0	POTS	1000.3	1000.6	III	G	2	40X	1700	
	0/50	1340	ONDR	1013.4	1014.5	DCIM		1	2520	3385	
			POTS	1058.7	1100.0	111	G,U	2	110U	240	
			POTS	1126.7	1127.5	DCIM		2	240	500	
			POTS	1144 6	1148.0	111	GG	3	40x	400	
			POTS	1233.8	1238.1	DCIM		ž	2000	400	
			POTS	1334.5	1334.7	III	G,U	2	135		
	2015	2400	CULG	2043.0	2043.0	111	B	1		220	
			CULG	2047.0	2050.0	III			40	130	
	2115	2400	HIRA	2047.0	2000.0	111	G	2	20	180	
	2115	6400	CULG	2319.0	2319.0	III	в	1	30	80	
22	0000	0745	CULG	0025.0	0004 0		_				
					0026.0	III	В	2	20	80	
	0000	0732	HIRA	0025.5	0025.7	111	В	1	25X	50X	
			CULG	0130.0	0132.0	III	G	1	40	140	
			HIRA	0134.9	0135.0	111	В	1	30	50X	
			CULG	0135.0	0136.0	111	G	2	25	180	
			CULG	0216.0	0216.0	III	В	1	23	50	
			CULG	0302.0	0340.0	III	Ň	1	20	180	
			CULG	0407.0	0409.0	III	G	2	20		
			HIRA	0408.0	0408.5	111	B			130	
			CULG	0524.0	0525.0	III		1	30	50X	
			CULG	0624.0			G	3	35	150	
					0624.0	. 111	В	1	55	130	
			CULG	0638.0	0706.0	11	SH	3	30U	420	SWF ESS 750
	0770	175/	CULG	0639.0	0650.00	11	FN	3	25U	170	
	0738	1220	POTS	0738 E	1356 U	I	S,C,DC	2	110U	400	
			POTS	0748	1356 U	III	N	1	110U	170U	
	0752	1340	ONDR								
			POTS	0753.7	0754.0	111	G	2	1100	170U	
			POTS	0754.2	0754.5	111	B	2	40X		
			POTS	0816.1	0817.9	111	G			65	
			POTS	0831.4	0833.9			3	40X	150	
			POTS	0851.5		III	G	3	1100	1700	
			PUID	00112	0854.9	111	G,C	3	40X	250	

SOLAR RADIO EMISSION Spectral Observations

	ORCEDUAT	ากม	EVENT FREQUENCY										
	OBSERVAT Start E			Start	End	Spectral	Event	Int	Lower	Upper	Remarks		
)ay	(UT) (Sta	(UT)	(UT)	Class	Remarks	(1-3)	(MHz)	(MHz)			
22			POTS	0858.9	0903.5	III	G	2	40X	1700			
			POTS	0911.9	0914.6	III	G	3	40X	350			
			POTS	0917.6	0918.6	III	G	2	1100	275			
			POTS	0939.1	0939.4	111	G	2	40X	90U			
			POTS	1006.3	1007.6	III	G	3	40X	170U			
			POTS	1024.0	1024.5	III	G	2	1100	275			
			POTS	1031.3	1039.6	111	GG,RS	2	40X	400			
			POTS	1047.1	1048.7	III	G	2	1100	300			
			POTS	1112.3	1113.3	111	G	3 2	40X 110U	220 1700			
			POTS	1144.7	1144.9		G G	2	40X	150			
			POTS POTS	1153.2 1214.7	1154.1 1215.4		G	3	1100	270			
			POTS	1256.4	1300.3	111	GG,U	3	40X	300			
			POTS	1331.1	1332.2	III	G	ž	1100	300			
			POTS	1349.8	1350.3	111	G	3	900	250			
			PALE	2022.0	2219.0	111	Ň	2	25	55			
	2015 24	inn	CULG	2023.0	2023.0	111	B	1	20	90			
			CULG	2040.0	2045.0	III	G	2	18X	200			
			CULG	2050.0	2050.0	111	B	1	25	40			
			CULG	2117.0	2119.0	111	G	ź	18X	180			
	2116 24	00	HIRA	2117.8	2118.8	III	G	1	30	50X			
			CULG	2219.0	2219.0	111	В	1	30	120			
			CULG	2300.0	2301.0	111	G	2	30	240			
			LEAR	2300.0	2301.0	III		2	30	80			
			PALE	2300.0	2300.0	III		1	25	50			
~~		*7 4											
23	0000 07	51	HIRA	0152 0	0201.0	III		2	30	80			
	0000 07	75.0	LEAR	0152.0 0153.0	0154.0	III	G	2	35	180			
	0000 07	50	CULG LEAR	0193.0	0204.0	III	9	1	33	55			
			LEAR	0333.0	0335.0	III			30	80			
			CULG	0334.0	0336.0	iII	G	2 2	20	170			
			LEAR	0429.0	0439.0	111	-	ī	46	80			
			LEAR	0515.0	0515.0	111		1	41	80			
			LEAR	0530.0	0535.0	III		1	30	80			
			LEAR	0617.0	0618.0	111		1	30	69			
			LEAR	0625.0	0625.0	III		1	34	69			
			CULG	0637.0	0638.0	UNCLF		1	400	600			
			SVTO	0657.0	0917.0	IV		1	35	85			
			CULG	0659.0	0700.0	111	G	1	25	90			
			LEAR	0659.0	0701.0	III		2	30	80			
			LEAR	0701.0	0826.0	IV		2	30	80			
	0738 13	556	POTS	0738 E	1356 U	I	S,C,DC	2	1100	400			
			POTS	0744	1328		N	2	110U 110U	170U 170U			
			POTS	0744	1356 U	III IV	N	1	40X	5750			
			POTS	0746.9	0750.2U		P G	3	40X 23	200			
			CULG	0747.0 0747.0	0749.0 0749.0		u	נ ד	30	80			
			LEAR SVTO	0747.0	0749.0	V		3 3 3 3 3 3	35	85			
			POTS	0747.0	0749.0	v III	GG	7	40X	450			
			POTS	0821.6	0821.8	III	B	3	40X	225			
			ONDR	1053.0	1116.0	DCIM	GG	3	800X	2000X			
			POTS	1055.0	1228	IV	P	3	40X	800X			
	0754 13	338	ONDR	1054.4	1127.2	DCIM	GG	3 3	2000X	4375X			
			SVTO	1104.0	1117.0	II		3	35	85	ESS 1400		
			POTS	1104.9	1107 . 5U	II	F,H	3	40X	50			
			POTS	1105 4	1117.50	11	SH,H	3	40X	900			
			POTS	1106.2	1108.6U	11	SH,H	3 2 3	110U	140			
			ONDR	1116.0	1154.2	DCIM	GG,FS	3	800X	2000X			
			SVTO	1117.0	1231.0	IV		2	35	85			
			ONDR	1128.0	1153.3	DCIM	GG	2	2000X	4375X			
			ONDR	1154.2	1202.4	DCIM	G,FS	2 3 2 2	800X	2000X			
			ONDR	1212.1	1225.4	DCIM	GG	2	800X	2000X			
			ONDR	1212.2	1225.1	DCIM	G	2	2000X	4375X			
				1213.3	1213.5	111	В	2 3	130	1700			
			POTS										
			POTS	1224.5	1226.6	III	G,C	3	40X	325			
			POTS SVTO	1224.5 1225.0	1226.6 1225.0			3	35	76			
			POTS	1224.5	1226.6	III	G,C GG,C,U	3 3 3 1					

NOVEMBER 1998

OBSERVATION EVENT FREQUENCY Start End Start End Spectral Event Int Lower Upper Remarks Day (UT) (UT) Sta (UT) (UT) Class Remarks (1-3) (MHz) (MHz) 23 SGMR 1916.0 1916.0 III 1 30 45 SGMR 1917.0 1917.0 45 TIT 1 30 2020 2400 CULG 2055.0 2055.0 III B 65 180 1 CULG 2103.0 2104.0 G 50 III 3 240 2117 2400 HIRA 2324.0 2324.0 LEAR III 1 30 54 2324.0 PALE 2324.0 III 29 37 1 LEAR 2333.0 2336.0 III 1 30 67 PALE 2333.0 2336.0 32 III 1 41 24 0007.0 0007.0 I FAR III 1 30 55 LEAR 0215.0 0223.0 III 2 30 80 0000 0750 CULG 0215.0 0216.0 III G 3 18X 270 0000 0731 0215.7 0215.9 HIRA III 1 25X R 50X CULG 0217.0 0222.0 II SH,H 2 60 150 SWF ESS 1000 CULG 0218.0 0220.0 2 35 11 FN,H 60 PALE 0218.0 0219.0 III 1 40 55 0223.0 LEAR 0241.0 11 2 30 80 ESS 0400 CULG 0224.0 0231.0 3 11 SH 50 90 ESS 400 CULG 0225.0 0229.0 30 11 FN 1 45 0230.0 0240.0 CULG п UE 1 30 130 0322.0 0323.0 LEAR III 1 30 49 LEAR 0407.0 0409.0 III 2 30 80 CULG 0408.0 0410.0 ш G 18 1 180 LEAR 0435.0 0435.0 III 1 30 50 0505.0 0508.0 LEAR III 2 30 75 CULG 0506.0 0506.0 20 III в 1 80 CULG 0604.0 0630.0 III N 20 180 1 LEAR 0610.0 0622.0 III 2 30 80 CULG 0710.0 0740.0 III N 1 20 130 LEAR 0740.0 0740.0 III 1 40 60 0738 1355 0740.1 0740.7 POTS G. 2 III 40X 170U 0743 1355 U POTS 110U I s 1 400 POTS 0751 1318 III N 1 110U 1700 LEAR 0755.0 0755.0 III 1 35 70 0755.6 0755.7 POTS III G 1 40X 90U 0756 1337 ONDR 0801.4 0805.4 III 2 1700 POTS G 110U 0821.0 0821.0 LEAR ш 1 45 60 POTS 0821.2 0829.7 III GG 3 40X 325 0825.0 0825.0 I FAR 111 1 45 60 POTS 0831.8 0832.1 III G 2 40X 1700 LEAR 0842.0 0847.0 III 3 30 80 SVTO 0842.0 0847.0 v 2 35 85 POTS 0842.3 0848.4 III GG,C 3 40X 375 POTS 0925.8 0927.3 III G 2 40X 1700 0926.0 0927.0 I FAR 2 III 30 80 SVTO 0926.0 0927.0 III 2 36 81 POTS 0940.4 0940.8 III G 2 40X 1700 0947.4 0947.1 POTS 2 III G 40X 160 POTS 0949.0 1006.6 III GG,C 3 40X 350 0951.0 0952.0 2 LEAR III 30 80 0951.0 SVTO 1006.0 III N 2 35 85 POTS 1101.2 1101.4 111 В 1 40X 70 POTS 1122.7 1122.9 DCIM 2 450 520 1156.5 1157.8 POTS III G 2 1100 170U POTS 1211.5 1211.6 111 в 2 1100 150 POTS 1225.4 1237.6 GG,C,RS III 3 40X 700 1234.0 1234.0 SGMR III 1 30 80 SVTO 1234.0 1234.0 3 III 35 85 1247.2 1259.5 POTS 2 ш GG 40X 170U POTS 1305.8 1306.0 III В 2 40X 170U SGMR 1320.0 1321.0 V 3 30 80 SVTO 1320.0 1321.0 III 2 36 84 POTS 1320.6 1321.1 111 G 3 40X 140 POTS 1335.0 1335.2 III B 2 110U 250 POTS 1340.1 1340.4 DCIM 1 225 400 SVTO 1420.0 1420.0 III 2 65 85 SGMR 1525.0 1527.0

III

1

30

80

SOLAR RADIO EMISSION Spectral Observations

(ATION		.		VENT			FREQU		
Dav		End (UT)	Sta	Start (UT)	End (UT)	Spectral Class	Event Remarks	Int (1-3)	Lower (MHz)	Upper (MHz)	Remarks
							KCIIICI KS	(: 5)	(1012)	(14112)	
24			SGMR	1855.0	1913.0	III	N	2	30	80	
	2020	2400	PALE CULG	1913.0	1913.0		р	1	27	56	
	2020	2400	CULG	2034.0 2102.0	2034.0 2102.0		B B	2 1	20 20	170 75	
	2118	2400	HIRA	2102.0	210210		ы	I.	20	75	
		2400	CULG	2207.0	2208.0	111	G	1	300	550	
			CULG	2212.0	2215.0	III	G	ż	20	500	
			PALE	2212.0	2214.0	III		1	27	45	
			CULG	2216.0	2226.0	11	FN	3	300	120	
			CULG	2216.0	2230.0	11	SH	2	60	250	ESS 600
			LEAR CULG	2216.0 2235.0	2224.0 2235.0	11	р	1	39	80	ESS 0800
			CULG	2239.0	2239.0		8 8	1 1	60 60	95 100	
			CULG	2340.0	2341.0	111	G	1	100	280	
							-	•		200	
25	0000	0730	HIRA								
			LEAR	0127.0	0127.0	III		2	30	59	
			PALE	0127.0	0127.0	III		1	30	45	
	0000	0750	LEAR CULG	0200.0 0201.0	0207.0 0201.0		D	2	30	70	
	0000	0.30	LEAR	0354.0	0201.0		B	1 2	18 30	45 61	
			LEAR	0505.0	0506.0	III		2	30	47	
			CULG	0514.0	0516.0	III	G	1	20	100	
			LEAR	0514.0	0516.0	III		2	30	80	
			CULG	0533.0	0536.0	III	G	2 3	60	300	
			LEAR	0533.0	0535.0	III		3	30	80	
			LEAR CULG	0634.0	0652.0			2	30	80	
			CULG	0642.0 0652.0	0642.0 0652.0		B G	1	20 23	100	
			LEAR	0733.0	0737.0	III	u	1 2	25 30	250 80	
			CULG	0734.0	0737.0	111	G	1	20	100	
	0738	1356	POTS	0738 E	1356 U	I	S	2	1100	400	
			POTS	0809.4	0809.7	III	G	2	75	1700	
			LEAR	0817.0	0818.0	111		2	30	71	
			SVTO	0817.0	0818.0	111		1	35	49	
			POTS	0817.2	0818.3	III	G	2	40X	1700	
			POTS POTS	0823 0823	1012 1330		N N	1	40X	900	
			POTS	0824.5	0824.8	III	n B	1 2	110U 40X	170U 140	
			POTS	0830.1	0830.4	111	G	2	1100	225	
			LEAR	0849.0	0850.0	111	-	2	30	71	
			SVTO	0849.0	0903.0	111	N	1	36	70	
			POTS	0849.8	0850.0	III	В	2	40X	90U	
			POTS	0852.2	0853.9		GG	2	40X	1700	
			POTS	0903.7 0940.5	0903.9		G	2	40X	160	
			POTS POTS	0940.5	0941.0 0940.8	DCIM III	D DC	2	225	310	
			POTS	0940.7	0951.5	DCIM	B,RS	2 2	120 260	160 400	
			POTS	0953.4	0953.6	III	G	2	1100	400 170U	
			POTS	0959.0	0959.9	DCIM		2	2000	550	
	0758	1335	ONDR	0959.1	0959.4	DCIM	G	1	800X	1965	
			POTS	1001.6	1006.2	III	GG	3	40X	225	
			SVTO	1002.0	1005.0	III		3	35	85	
			LEAR POTS	1004.0 1012.3	1004.0 1012.7	III III	c	2	30 (0)	80	
			POTS	1012.3	1012.7	III	G B	2 2	40X 110U	150 145	
			POTS	1029.5	1030.1	DCIM	Ŭ	2	220	450	
			POTS	1033.4	1034.0	III	G	2	40X	250	
			POTS	1046.0	1046.1	111	В	2	1100	160	
			POTS	1050.5	1100.3	DCIM		2	2000	550	
			POTS	1106.4	1108.1	111	G	2 2	1100	250	
			POTS	1151.2	1151.5		B	2	40X	160	
			POTS SVTO	1211.4 1212.0	1211.6 1213.0	DCIM		1	250	400	
			POTS	1212.0	1213.0		G	2 2	36 402	73	
			POTS	1336.1	1336.8	DCIM	J	2	40X 200U	1700 375	
			SGMR	1408.0	1414.0	II		2	50	80	ESS 1000
			SVTO	1408.0	1412.0	11		2	60	85	ESS 0600
				1513.0	1514.0						

		VATION	I	Dhant		EVENT	. .		FREQU		
ħ		t End (UT)	C+	Start	End	Spectral		Int	Lower	Upper	
	(01)	(01)	Sta	(UT)	(UT)	Class	Remarks	(1-3)	(MHZ)	(MHz)	
25			SGMR	1813.0	1815.0	III		1	30	60	
	2020	2400	CULG	2156.0	2156.0	111	В	1	30		
			PALE	2213.0	2214.0	111	0	2	25	100	
	2119	2400	HIRA	2213.6	2213.7	III	В	1		70	
			CULG	2214.0	2215.0	III			25X	50X	
			LEAR	2214.0			G	2	18X	150	
					2214.0	111		2	30	80	
			PALE	2324.0	2326.0	111	•	2	25	70	
			CULG	2325.0	2327.0	111	G	3	18X	130	
			LEAR	2325.0	2326.0	III	_	3	30	80	
			HIRA	2325.9	2326.1	111	В	1	25X	50X	
26	0000	0770	UT0.4								
20	0000	0130	HIRA	0010 0	0000 0			_			
	0000	0750	LEAR	0019.0	0022.0	III	_	2	30	56	
	0000	0750	CULG	0019.0	0023.0	III	G	1	20	130	
			LEAR	0129.0	0129.0	III		1	30	67	
			LEAR	0213.0	0213.0	111		1	30	69	
			LEAR	0253.0	0256.0	III		2	30	80	
			CULG	0254.0	0256.0	111	G	1	20	140	
			LEAR	0312.0	0312.0	III		2	30	80	
			CULG	0330.0	0331.0	III	G	ī	20	90	
			LEAR	0330.0	0331.0	III		1	30	65	
			CULG	0345.0	0401.0	CONT		1	30	80	
			LEAR	0346.0	0402.0	CONT		1	30		
			CULG	0411.0	0415.0	III	G			80	
			LEAR	0411.0	0412.0		a	1	20	90	
						111	-	2	30	80	
	0770	1751	CULG	0717.0	0718.0	111	В	1	23	9 0	
	0738	1004	POTS	0738 E	1354 U	I	S	1	80	400	
			POTS	0752.9	0758.1	111	G	2	40X	170U	
			POTS	0942.5	0947.0	DCIM		2	200U	450	
	0800	1334	ONDR	0944.0	0944.4	DCIM		1	1005	2000X	
			POTS	0946.8	0947.1	UNCLF		2	130	150	
			POTS	0953.2	0953.4	III	G	Ž	1100	1700	
			SGMR	1016.0	1020.0	111	-	1	30	80	
			POTS	1028.1	1030.0	DCIM		2	250	550	
			POTS	1028.4	1029.1	III	G	2			
			POTS	1036.7	1036.9			2	1100	1700	
						III	G	2	1100	170U	
			POTS	1039.1	1040.0	III	G	2	110U	1700	
			POTS	1043.6	1044.7U	II	SH	1	110U	120	
			POTS	1043.7	1045.3	II	F	1	48	60	
			POTS	1119.5	1124.3	III	GG	2	40X	220	
			POTS	1224.8	1226.1	III	GG,C	3	40X	325	
			SVTO	1225.0	1225.0	111	•	2	35	85	
			SGMR	1616.0	1620.0	111		1	30	80	
			SGMR	1643.0	1650.0	v		1	30	80	
	2020	2400	CULG	2026.0	2057.0	III	N	1	18	80	
	2120		HIRA					Ŧ	10		
			PALE	2253.0	2355.0	111		2	25	50	
			CULG	2315.0	2316.0	III	G	1	20		
			LEAR	2316.0	2317.0	111	-			90	
			CULG	2356.0	2356.0	III	D	1	36	62	
			LEAR	2356.0	2356.0		В	1	20	90	
			LCAK	0.0102	2330.0	III		1	30	80	
7	0000	1730	HIRA								
	0000 0	0.10		0055 0	0055 0			•	-	 .	
			LEAR	0055.0	0055.0	111		1	30	71	
	0000		LEAR	0724.0	0732.0	111		2	30	80	
1	0000 (1/20	CULG	0724.0	0747.0	111	N	1	20	300	
			SVTO	0725.0	0730.0	111		2	35U	85U	
			CULG	0730.0	0745.0	11	FN	3	25	70	
			LEAR	0732.0	0757.0	Π.		2	30	80	ESS 0700
			SVTO	0732.0	0751.0	II		ž	35	85	ESS 0500
			CULG	0733.0	0745.0		SH	3	55		
			CULG	0735.0	0750.0D	IV		5 1		130	ESS 500
			CULG	0740.0	0742.0		ен		180	470	
							FN	2	30	55	
			CULG	0741.0	0742.0		SH	2	60	110	ESS 1800
			CULG	0745.0	0750.0D		FN	1	30	55	
		-	CULG	0745.0	0750.OD	II	SH	1	60	110	ESS 650
			ONDR							-	
	0802 1										
	0802 1 0829 1		POTS	0829 E	1355 U 0839.4	Ι	S,C,DC	2	70	320	

OBSERVATION EVENT FREQUENCY Start End Start End Spectral Event Int Lower Upper Remarks Day (UT) (UT) Sta (UT) (UT) Class Remarks (1-3) (MHz) (MHz) 27 POTS 1121.8 1122.0 III в 2 110U 170U POTS 1229.9 DCIM 1232.3 2 400 675 2121 2400 HIRA 28 0000 0729 HIRA 0319.0 0319.0 LEAR 111 2 30 80 0554.0 0605.0 LEAR II 1 30 ESS 0700 57 0624.0 0637.0 LEAR I٧ 1 30 52 LEAR 0712.0 1033.0 I٧ 30 / 2 65 0739 1355 0739 E 1355 U POTS s,c,DC 350 I 40X 0804 1331 ONDR 0814.0 1029.0 SVTO CONT 35 85 1 POTS 0833.4 0849.9U II UE 40X 70 1 POTS 0846.3U 0849.1 UNCLF 2 40X 90U POTS 1033.9 1034.0 DCIM 360 500 1 2020 2400 CULG 2122 2400 HIRA 29 0000 0729 HIRA 0000 0750 CULG 0738 1355 0743 1355 U POTS I s 2 1100 350 0806 1330 ONDR 0834.1 POTS 0831.3 DCIM 2 2000 340 LEAR 0832.0 0832.0 III 1 30 80 POTS 0832.1 0832.8 2 2 III B 40X 1700 1035.4 1036.0 POTS III G 1100 270 POTS 1042.6 1042.7 DCIM 1 375 500 POTS 1249.1 1249.4 111 2 G 40X 145 POTS 1309.7 1309.8 III В 1 40X **9**0U 1351.9 POTS 1352.3 III G 22 40X 70 POTS 1352.6 1353.2 III G 40X 400 1408.0 1411.0 SGMR 1 III 30 80 SVTO 1411.0 1411.0 III 1 61 79 SGMR 1610.0 1610.0 III 1 30 80 PALE 2047.0 2046.0 111 3 25 70 2020 2400 CULG 2046.0 2047.0 III G 3 18X 300 2123 2400 HIRA LEAR 2252.0 2255.0 111 1 30 67 CULG 2253.0 2255.0 III G 20 1 130 LEAR 2330.0 0856.0 CONT 30 1 72 CULG 2346.0 2349.0 III G 1 25 120 30 0000 0750 CULG 0022.0 0026.0 III 1 G 18 130 0000 0729 HIRA 0022.5 0023.9 III G 1 25X 110 HIRA 0025.5 0025.7 III B 25X 1 150 CULG 0050.0 0051.0 III 1 G 25 90 0051.0 0050.0 LEAR III 2 30 80 LEAR 0141.0 0143.0 III 3 30 80 CULG 0142.0 0144.0 2 111 G 18X 140 0142.3 HIRA 0143.4 ш G 1 25X 200 CULG 0537.0 0540.0 ш G 1 30 90 0647.0 0651.0 CULG 25 III G 1 130 0807 1354 POTS 0807 E 1354 U I S,C,DC 2 110U 300 0808 1330 ONDR POTS 0825.0 0828 UNCLF 2 45 65 SVTO 1411.0 1411.0 III 1 61 79 2020 2400 CULG 2124 2400 HIRA

SOLAR RADIO NOISE STORM AT 164 MHZ FROM NANCAY RADIOHELIOGRAPH

NOVEMBER 1998

	HELIOGRAPHI MEAN	CS POSITIONS VALUES ¹	IMP ²	IMP ² OBSERVING			
DAY	E-W	S-N		START(UT)	END(UT)		
04/11/98	+0.33	+0.31	V	8H04 E	15H03 D		
04/11/98	+0.62	+0.11	IV	8H04 E	15H03 D		
05/11/98	+0.76	-0.03	III	8H04 E	15H03 D		
06/11/98	+0.78	-0.11	III	8H17 E	15H04 D		
07/11/98	-0.20	+0.20	I	8H21 E	15H03 D		
08/11/98	-0.40	+0.28	I	9H45	15H03 D		
08/11/98	+1.22	+0.51	I	11H32	15H03 D		
09/11/98	-0.25	-0.03	I	13H20 E	15H04 D		
10/11/98	+0.59	+0.40	III	8H05 E	15H04 D		
10/11/98	+1.71	+0.37	III	8H05 E	15H04 D		
11/11/98	+0.71	+0.28	I	8H05 E	15H04 D		
12/11/98	+0.81	+0.17	III	8H05 E	15H04 D		
12/11/98	+1.61	+0.17	III	11H20	15H04 D		
14/11/98	+0.20	-0.47	I	8H05 E	15H04 D		
14/11/98	+1.27	+0.43	I	8H05 E	15H04 D		
16/11/98	+0.33	-0.45	П	8H51 E	15H04 D		
16/11/98	+0.78	-0.28	П	10H30	15H04 D		
17/11/98	+0.62	-0.62	III	8H09 E	15H05 D		
18/11/98	+0.81	-0.62	I	9H16 E	15H05 D		
19/11/98	+0.68	-0.67	I	9H01 E	15H05 D		
20/11/98	+0.96	-0.79	III	8H06 E	15H05 D		
21/11/98	+1.18	-0.37	I	8H07 E	10H50 D		
23/11/98	-1.36	-0.56	III	8H17 E	15H07 D		
27/11/98	-0.40	-0.53	III	8H08 E	15H07 D		
28/11/98	-0.71	+0.16	III	8H09 E	15H08 D		
29/11/98	-0.91	-0.02	I	8H09 E	15H08 D		
29/11/98	+1.01	+0.47	III	8H09 E	15H08 D		
30/11/98	+1.22	+0.84	III	9H26 E	15H09 D		

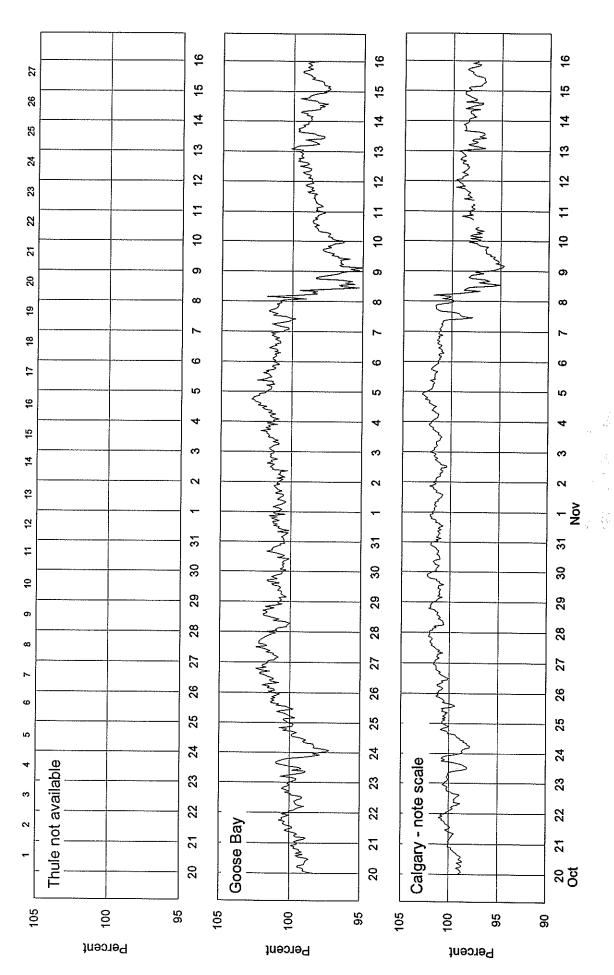
.

 ¹ POSITIVE E-W AND S-N COORDINATES CORRESPOND TO THE N-W QUADRANT
 ² IMP1: FLUX<5 SFU IMP2: 5< FLUX < 20 SFU IMP3: 20< FLUX <100 SFU IMP4: 100< FLUX <300 SFU IMP5> 300 SFU

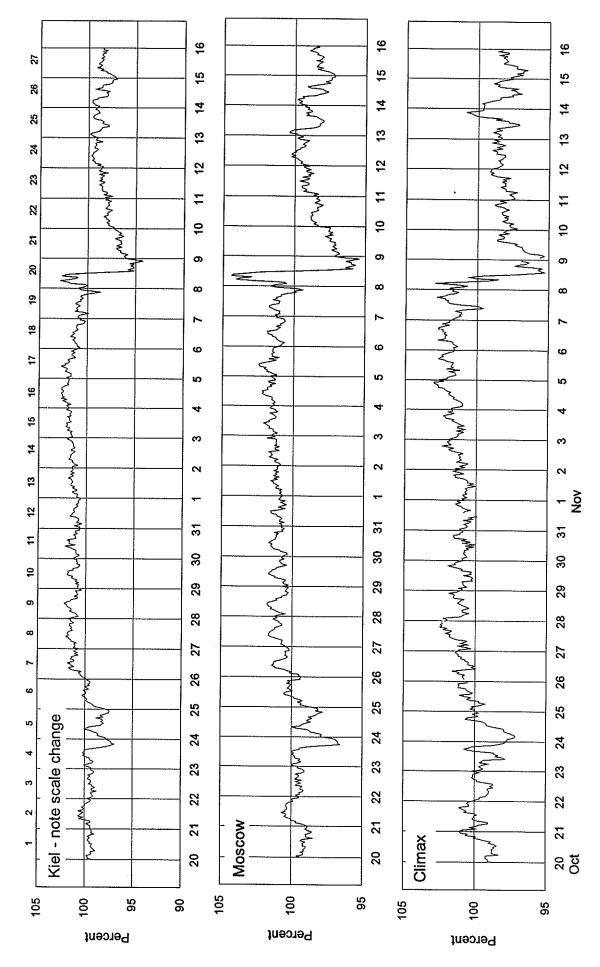
³ E NOISE STORM IN PROGRESS AT THE BEGINNING OF THE NANCAY OBSERVATIONS D NOISE STORM IN PROGRESS AT THE END OF THE NANCAY OBSERVATIONS

SOLAR RADIO NOISE STORM AT 327 MHZ FROM NANCAY RADIOHELIOGRAPH

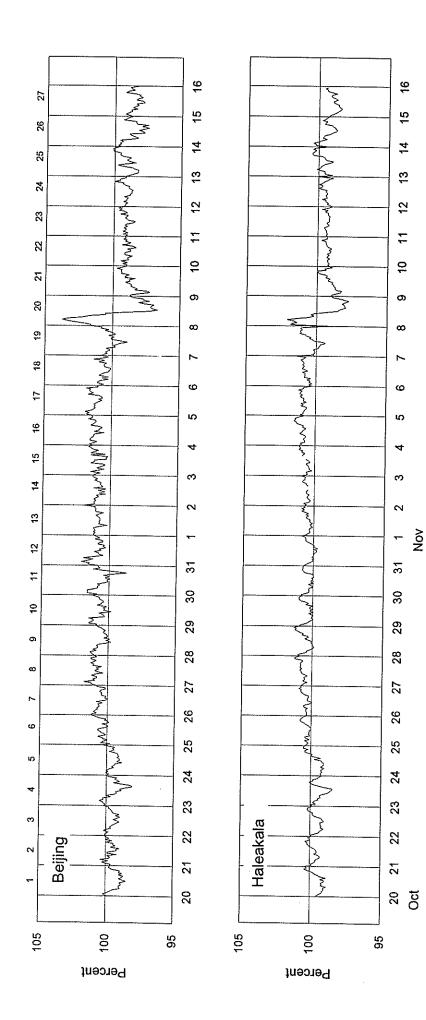
NOVEMBER 1998

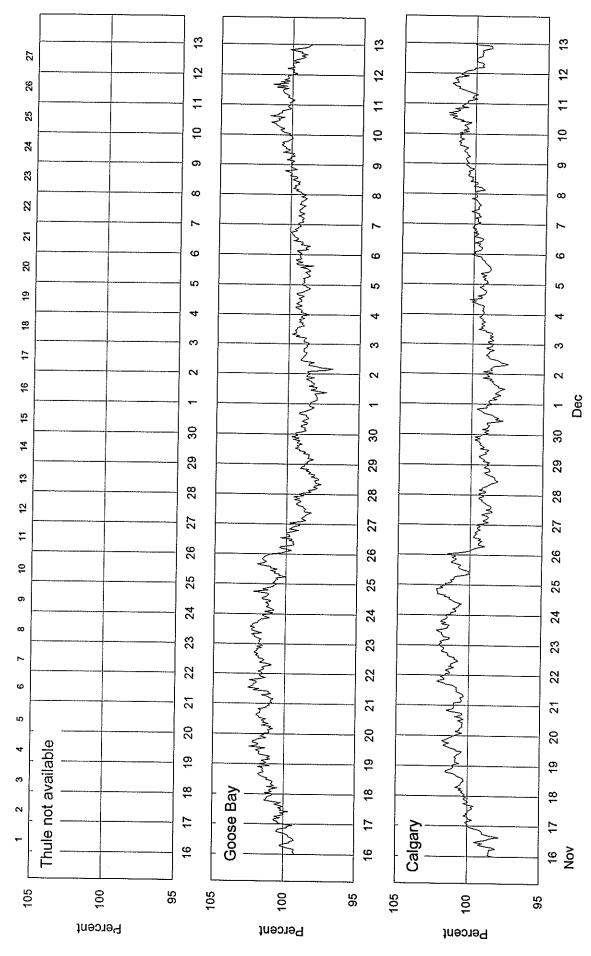

		NOVE	MBER 1998	· · · · · · · · · · · · · · · · · · ·	
	HELIOGRAPHIC MEAN VA		IMP ²	OBSERVING	TIME ³
DAY	E-W	S-N		START(UT)	END(UT)
04/11/98	+0.23	+0.06	Ш	8H04 E	15H03 D
05/11/98	-0.88	+0.02	II	8H04 E	15H03 D
05/11/98	+0.64	+0.02	I	8H04 E	15H03 D
06/11/98	-0.42	+0.11	I	8H17 E	15H04 D
06/11/98	+0.76	+0.08	I	8H17 E	15H04 D
06/11/98	+0.95	-0.50	I	8H17 E	15H04 D
07/11/98	-0.29	+0.19	II	8H21 E	15H03 D
07/11/98	-0.14	+0.29	II	8H21 E	15H03 D
08/11/98	-0.28	+0.09	I	8H04 E	15H03 D
08/11/98	+0.00	+0.22	I	8H04 E	15H03 D
08/11/98	+0.98	+0.28	I	8H04 E	15H03 D
08/11/98	+1.18	+0.43	I	8H04 E	15H03 D
09/11/98	-0.16	+0.05	I	13H20 E	15H04 D
09/11/98	+1.19	+0.31	II	13H20 E	15H04 D
10/11/98	+0.03	-0.05	I	8H05 E	15H04 D
10/11/98	+0.39	+0.17	I	8H05 E	15H04 D
10/11/98	+1.29	+0.23	I	8H05 E	15H04 D
11/11/98	+0.42	+0.16	I	8H05 E	15H04 D
11/11/98	+0.74	+0.36	I	13H50	15H04 D
12/11/98	+0.78	+0.31	I	9H14	15H04 D
12/11/98	+1.36	+0.28	I	12h30	15H04 D
13/11/98	+0.91	+0.28	I	8H07	15H04 D
14/11/98	-0.22	-0.57	I	8H05 E	15H04 D
14/11/98	+1.19	+0.34	I	8H05 E	15H04 D
15/11/98	+0.08	-0.51	II	8H05 E	15H04 D
16/11/98	+0.31	-0.50	ПІ	8H51 E	15H04 D
17/11/98	+0.43	-0.56	Ш	8H09 E	15H05 D
18/11/98	+0.74	-0.62	III	9H16 E	15H05 D
19/11/98	+0.91	-0.57	I	9H01 E	15H05 D
20/11/98	+0.99	-0.54	III	8H06 E	15H05 D
21/11/98	+0.99	-0.40	I	8H07 E	10H50 D
21/11/98	+1.05	-0.59	I	8H07 E	10H50 D
23/11/98	-1.24	-0.42	II	8H17 E	15H07 D
23/11/98	-0.93	-0.64	II	8H17E	15H07 D
24/11/98	+0.31	-0.48	I	8H07 E	14H06 D
26/11/98	-0.81	-0.60	II	8H08 E	15H07 D
26/11/98	-0.47	-0.65	I	13H00	15H07 D
27/11/98	-0.23	-0.48	III	8H08 E	15H07 D
27/11/98	+0.85	+0.50	II	12H40	15H07 D
28/11/98	-0.67	+0.20	I	8H09 E	14H00
28/11/98	+0.95	+0.37	II	8H09 E	15H08 D
29/11/98	-1.02	+0.50	I	8H09 E	9H59 D
29/11/98	+1.01	+0.47	II	8H09 E	15H08 D
30/11/98	+1.18	+0.20	I	9H26 E	15H09 D

NO DATA: 22 NOVEMBER 1998

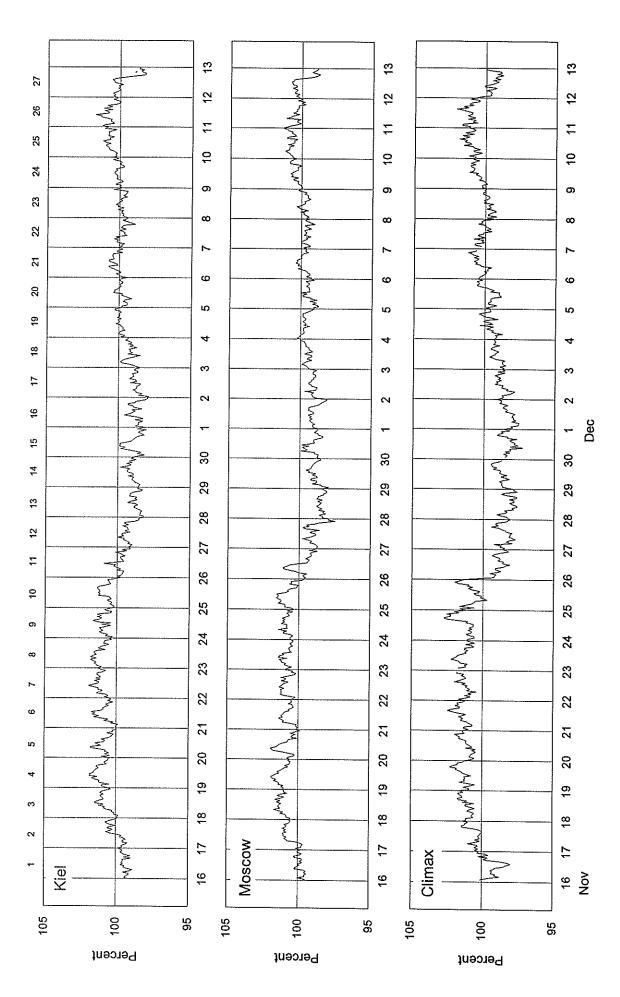

OTHERS DAYS: NO DETECTABLE NOISE STORM

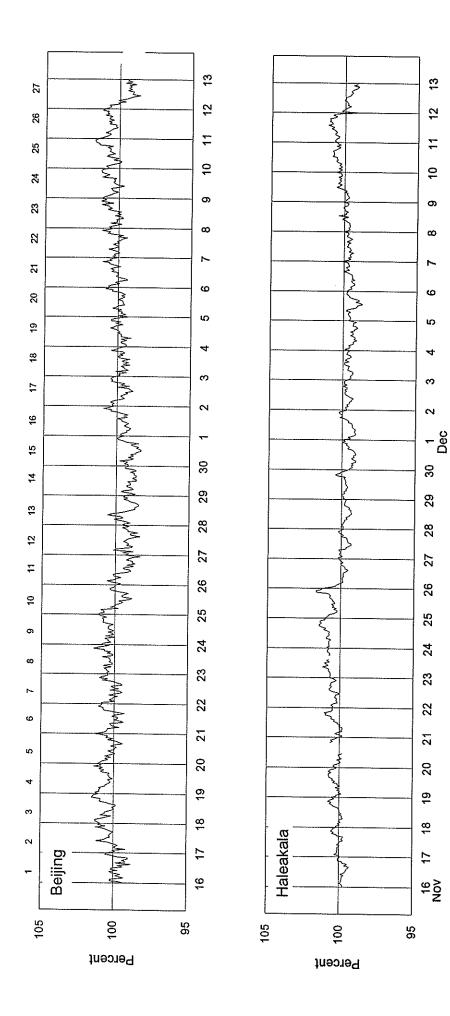
ľ	I					Nov 98
HALEAKALA Average (cts/h)/1000	3583.8 3583.6 3591.8 3604.1 3601.6	3595.4 3581.5 3555.4 3535.7 3542.6	3545.1 3550.1 3550.2 3550.6 3530.8	3542.4 3555.6 3556.8 3564.0 3558.3(48)	3562.2 3566.7 3580.5 3577.3 3577.3 3551.1 3546.2 3539.8 3546.5 3529.6	3566.6 lber of
BEIJING Average (cts/h)/256	2026.1 2026.8 2027.2 2032.5 2034.2	2020.2 2010.1 2000.9 1982.5 1987.1	1990.2 1989.9 1990.3 1981.1 1978.7	1978.8 1990.5 1998.3 1998.4	1989.6 1988.2 1994.5 1984.1 1973.2 1965.1 1965.1 1966.5	1986.1 es enclose the num
CLIMAX Average (cts/h)/100	4234.8 4258.8 4263.7 4279.1 4282.6	4287.5 4260.5 4139.2 4087.4 4118.1	4122.6 4138.0 4149.0 4136.4 4103.7	4120.8 4172.6 4197.0 4208.4 4195.7	4212.8 4204.2 4207.6 4111.5 4111.5 4074.4 4078.5 4078.5	4212.0 1986.1 3 For Climax, parentheses enclose the number of all three sections fails bolow an house
MOSCOW Average (cts/h)/64	9266.0 9281.0 9301.7 9314.2 9318.2	9267.4 9253.7 9125.9 8918.0 9027.7	9080.8 9129.1 9071.9 9028.8 9000.7	9074.0 9141.4 9195.1 9201.2 9165.0	9151.5 9169.8 9166.5 9168.1 9070.6 8998.4 8998.7 8992.3 9003.2	
KIEL Average (cts/h)/100	6295.2 6303.0 6323.7 63250.2 6326.9	6279.4 6247.7 6125.2 6000.8 6079.6	6115.0 6162.6 6148.4 6120.6 6111.1	6129.9 6169.0 6213.1 6241.4 6216.7	6214.0 6241.8 6246.6 6225.8 625.8 625.8 6157.9 6126.4 6109.7 6103.3	6220.5 9196.1 er of hours for which data are available. hours and for Haleakala whenever the
CALGARY Average (cts/h)/300	3965.3 3956.2 3970.3 3986.8 3979.5	3955.7 3930.3 3837.0 3753.5 3818.0(19)	3845.7(22) 3863.5 3827.8 3832.0 3814.0	3834.0 3881.3 3908.0 3923.7 3909.0	3922.8 3935.7 3935.7 3938.0 3917.3 3871.2 3871.2 3836.2 3836.2 3836.2 3836.8	
GOOSE BAY Average (cts/h)/100	7298.7 7315.6 7340.8 7375.2 7348.0	7322.1 7296.5 7092.1 7000.1 7085.5	7127.0 7172.3 7164.4 7136.4 7123.6	7143.8 7200.4 7250.5 7284.0 7267.7	7280.0 7287.3 7305.4 7256.3 7256.3 7239.5 7153.2 7091.4 7091.0 7091.0 7078.9	Mean 7205.7 3889.8 For less than 24-hour coverage, parentheses enclose the numb section hours whenever the sum of both sections falls below 40
1HULE Average (cts/h)/100	No data at time of publication					an 24-hour covera
Day	ო იფი - ი	v v ∞ 0 0	1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	16 17 19 20	31 33 58 54 53 57 54 53 57 58 58 58 58 58 58 58 58 58 58 58 58 58	Mean For less th section ho


COSMIC RAY INDICES (Neutron Monitor) Bartels Rotation 2256 - Beginning 20 Oct 98


145 Nov 98

•


COSMIC RAY INDICES (Neutron Monitor) Bartels Rotation 2256 - Beginning 20 Oct 98


COSMIC RAY INDICES (Neutron Monitor) Bartels Rotation 2257 - Beginning 16 Nov 98

COSMIC RAY INDICES (Neutron Monitor) Bartels Rotation 2257 - Beginning 16 Nov 98

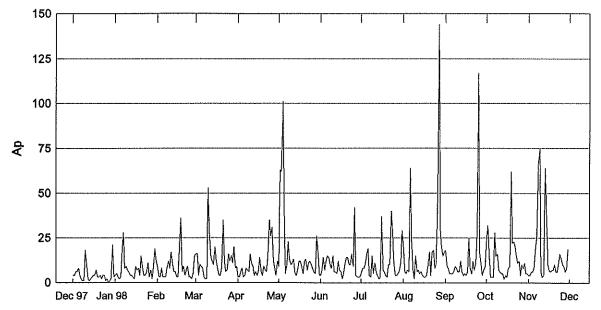
COSMIC RAY INDICES (Neutron Monitor) Bartels Rotation 2257 - Beginning 16 Nov 98

Mt. Washington Neutron Monitor Pressure-Corrected Values Jan 1954 - Nov 1998

	2600	<u> </u>	I I		<u> </u>	<u> </u>	<u> </u>)
		1.			i.					ħ				
ır/64		\/	Δ		M	'n	AnA M	Ω		гĄ		M	- 200	er i
Monthly Mean Counts/Hour/64	2300				$\sqrt{1}$, [WW	W.		AL	N			Smoothed Sunspot Number
unts			M	N IN	., 10	₩ [I	'\^	h I	/ \/	m.		- 150	oot N
ပိ				M		MM			NV	Å				fsun
Meal				۷ ' (MA		\mathcal{M}			WIN				- 100	spe
thly I	2000		l M				<u>م</u>		N			Cycle 23		ooth
Mon			Ŷ	'\		Ŷ			IÌ			A	- 50	Sme
			• 1	\sim	λ/	Cuela 20	M		- 04		le			
	1700		Cycl	e 19 	Y.	Cycle 20		,∕ Cyc	(8 21	γ	 1. 1. <i>1</i> .	\mathbb{M}	⊥┘₀	
مراجع المراجع br>محمد المراجع ال		1954	1958	1962	1966	1970	1974	1978			90 1994			
Year 1954	Jar	*	eb 	Mar	Apr 	May	Jun 2485	Jul 2508	Aug 2505	5 2465	Oct 2459	Nov 2388	Dec 2389	Mean 2457
1955 1956	236 224	5 22	882 250	2434 2170	2448 2283	2264	2295	2475 2320	2483 2313		2337	2422 2261	2372 2152	2428 2264
1957 1958	208 193	1 20)82)32	2101 1896	2042 1927	2081 2000	2054 2021	2029 1960	2058	3 1961	2000	1990	1943	2035
1959	201	8 19	92	2054	2082	2034	2068	1923	1950) 1979	2043	2025 2053	1992 2040	1977 2020
1960	200 5390 1919	7 20 330 mili)19	2057	2024	2022	2055	2057	2092 1919 - 1919	2089	2081	2085	2091	2057
1961	215 216		62	2145 2202	2151 2210	2181	2175	2090	2147	2173	2194	2233	2197	2167
1962 1963	224	7 22	83 169	2268	2307	2243 2285	2247 2313	2257 2327	2253 2310	3 2229) 2277	2220 2295	2239 2301	2209 2329	2221 2294
1964 1965	233 243		37 36	2357 2453	2372 2465	2399 2484	2409 2443	2407 2441	2413 2427	3 2417	2417 2445	2409	2409	2390
1966	241:	2 24	15	2396	2375	2401	2379	2362	2359	2260	2329	2452 2349	2442 2323	2447 2363
1967 1968	228 225	0 22 7 22	81 142	2305 2231	2304 2250	2263 2234	2279 2186	2298 2199	2271 2199	2270 2190	2276 2157	2226 2086	2228 2106	2272 2195
1969	216	7 21	84	2176	2159	2110	2090	2115	2155	5 2174	2179	2159	2169	2153
1970	2170) 21	85	2176	2138	2172	2117	2117	2146	5 2189	2217	2167	2245	2170
1971	225			2284	2281	2294	2360	2379	2386		2392	2393	2391	2339
1972 1973	238 240	1 23 2 2 4		2405 2383	2434 2345	2407 2315	2350 2363	2388 2376	2272 2393		2399 2423	2390 2436	2397 2441	2383 2392
1974	243	2 24	49	2426	2405	2360	2335	2300	2341	2315	2320	2342	2377	2367
1975 1976	238 241			2408 2423	2428 2409	2437 2422	2443 2431	2435 2439	2422 2440	2425 2440	2421 2444	2400 2441	2417 2447	2419 2432
1977 1978	2449	9 24	42	2438	2438	2439	2427	2386	2390	2395	2411	2438	2431	2424
1979	2386 2290		90	2372 2262	2342 2207	2275 2219	2314 2162	2320 2167	2366 2101		2307 2159	2323 2173	2312 2220	2339 2197
1980	222() 22	11 Mariason	2234	2185	2191	2118	2104	2107		2067	2035	2031	2134
1981	212(2053	2048	2037	2061	2075	2080	2118	2025	2047	2112	2070
1982 1983	215: 2071			2158 2169	2163 2165	2187 2091	2051 2129	1947 2175	1950 2181		1962 2186	2017 2204	1979	2046
1984	2244	1 22	32	2199	2161	2119	2144	2171	2199	2203	2207	2217	2195 2216	2155 2193
1985 1986	2250 2368			2283 2366	2289 2413	2300 2402	2323 2407	2316 2401	2324 2408		2333 2425	2345 2380	2362 2423	2311 2392
1987	2460) 24	86	2480	2480	2442	2406	2383	2373	2347	2330	2294	2291	2398
1988 1989	2264 2137			2294 2003	2294 2015	2271 1970	2266 1971	2215 2037	2203 2002		2203 1942	2195 1885	2164 1937	2238 2000
1990	1975			1967	1909	1890	1893	1959	2002 1944		2018	2067	2070	2000 1975
1991	2132	2 21	32	2005	1988	2001	1787	1759	1888	1988	2005	2036	2068	1982
1992	2072	2 20	20	2096	2168	2142	2190	2227	2217	2204	2252	2240	2285	2176
1993 1994	2283 2331			2233 2279	2261 2279	2272 2301	2282 2298	2294 2319	2289 2341		2312 2351	2325 2364	2323 2366	2288 2324
1995	2388	3 24	02	2374	2391	2393	2385	2385	2391	2406	2403	2411	2414	2324 2395
1996 1997	2415 2410			2436 2437	2442 2419	2427 2407	2417 2428	2416 2423	2417 2433		2397 2418	2402 2415	2412 2435	2419
1998	2429	24	42	2442	2372	2317	2317	2332	No data	2340	2348	2329		2423 2152
wulliply	table ent	nes by 6	4 IO OD[;	ain nourly	counting	rate. Mt.	Washing	ion, NH: 1	N44. W71	. Alt=1909	m, Cutoff Ri	nidity=1.3	8GV	

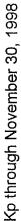
Multiply table entries by 64 to obtain hourly counting rate. Mt. Washington, NH: N44, W71, Alt=1909 m, Cutoff Rigidity=1.38GV. NOTE: Sunspot numbers are preliminary after Jun 97.

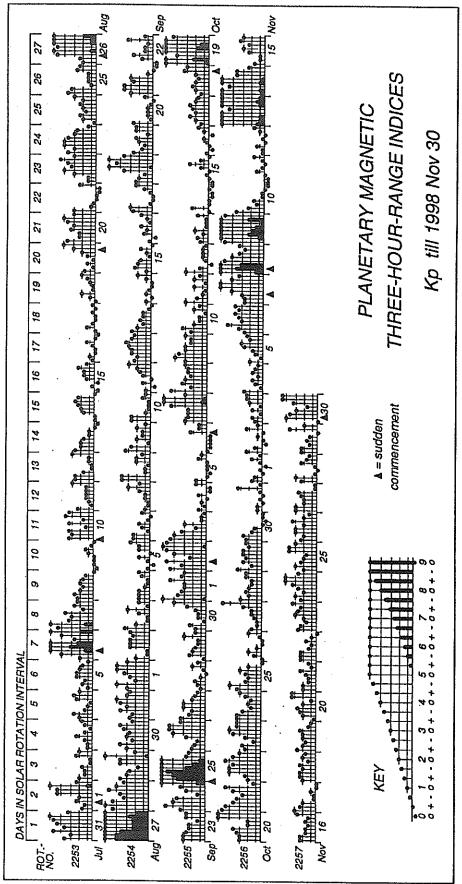
므려류**푀**쌺칃고데┍ᇊ**붜빌ᆂ므**౿ᇋᇊᄷᇵᆂ౽౽그ᆤᆥᇔᆮᇟᆿᇹᄲຠ┎꼊**ᇭᆂᆂ**单ם┏ㅋ**┍**께ᆂᆴ


Geomagnetic Activity Indices November 1998

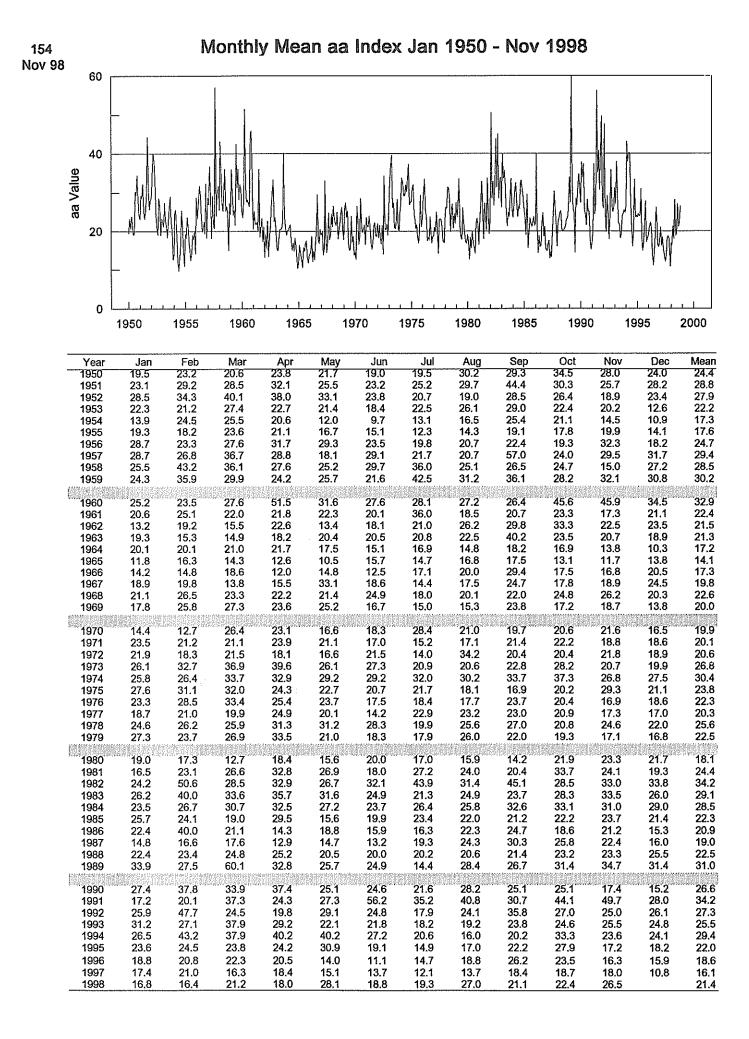
美国地区空间日本美国地区会议

Day				ree 3	-Ho 4	urly		ndi 6			Sum		Ap	(Cp	Kn 1	n Ti 2	hre 3	e-	Hou 4						Am	a. N	a Pro	visio S		M
2 3	Q3 Q4 Q9 Q5	2+ 1+ 3-	1+ 2- 1-	0 1- 1+	1- 0+ 2- 2- 2-		1 1 1	0+ 2 2-	2+ 2+ 1+	1- 1 2+ 1 2+	7 9- 13- 11+ 16-		4 4 6 8	0	.3 .3	2- 1+ 2+	- 1 - 1 - 1 - 0 - 1	+ C + 1 + 2)o - ?-	0+ 20 2-		1+ 1- 1+	1- 2+ 20	3- 20 1+	1+ 1+ 3- 1+ 2+	7 9 12 11 16	14 16		3 7 13 11 18	10 12	6 CC 12 CC 17 11 C 27
8	D5 D2 D1 Q10K	3- 6 5-	3- 8- 6-	7-	4 5- 6+		5 4 6	5 3+ 5+	4 3- 7-	4- 3+ 3+ 5- 0	27+ 30- 39 46 11-	2 6 -	20 26 56 75 6	1. 1. 1. 0.	2 7 8	2+ 5c 4+	3 2 7 5 2) 3 - 7 ⊦ 5		30 4+ 60		5- 40 5+	4+ 30 5-	40 30	3+ 3+ 4- 4+ 00	35 42 91 103 11	34 46 73 93 14	1	38 46 64 85 8	27 103	44 65 33 84 4 K
11 12 13 14 15	D3	1- 6 5+	1- 6- 6-		6-		1- 4+ 5+	0+ 6- 4-	1 6 4-	2- 2- 6- 2+ 3	5 7- 44 36 18-	64	3 4 1 0	0. 0. 1. 1.	1 7 5	0+ 5+ 4+	04 1- 5- 5- 1+	- 1 - 5 - 4	+ 0	1- 50 5+		1- 4+ 50	1- 50 3+	1+ 5+	2- 2- 50 2+ 3-	6 94 63 19	8 9 95 68 24	1	7 9 33 55 20	91	7 CC 10 C 88 51 32
16 17 18 19 20	Q6K	3 2 3-	2+ 2+ 2	2- 2 2+ 2- 2+	1- 2 2		1– 2+ 2	1 1+ 2+	0+ 2 1+	3- 0+ 2- 1 3+	15 10+ 16 15 17+		7 6 7 7 0	0. 0. 0. 0.	3 4 4	2+ 2- 20	2- 2- 2- 2- 2-	2	+ : + : o :	10 2+ 2+		10 20 2+	1+ 20 3-	1+ 0+ 2- 20 30	1- 2- 2-	13 10 14 16 19	16 12 15 15 24	- - - -	9 11 17 17	17 19 19	14 C 6 C 13 13 25
21 22 23 24 25		2+ 3- 2+	2+ 2+ 3	1+ 2+ 2- 2 2+	1+ 2 3-		1 3 3+	3-	1 2+ 4	0+ 3+ 3-	13 12+ 20 24 21+	1 1	6 6 1 6 3	0. 0. 0. 0.	3 6 9	1+ 20 20	2 2 30 2+	2 2 2	+ 2	2- 2+ 3-		2 30 3+	20 30 4-	10 1+ 3- 4- 30	1- 30 2+	12 12 21 29 21	13 12 30 33 28	2	8 8 20 32	12 17 23	33
26 27 28 29 30		2+ 3 2+ 2+ 0+	3 3 2+ 4	2 1- 1+ 4-	2 0+ 2- 3		2+ 1- 1+ 2-	0+ 3+	1- 2- 4- 4+	1- 1+ 2 4+	19 16+ 12+ 15 25-	1	9 6 8 9	0. 0. 1.	5 3 4 0	3- 2- 20	2+ 2-	1+ 2- 1+ 3-	+ 3 - 1 + 2	3- 1 2		20 10 2-	3- 2+ 10	A	10 1+ 2-	20 16 12 14 34	19 19 14 20 42	1 1 4	3 9 8 8 1	22 22 18 11 32	16 15 17 52
Mear) 1 111 200 000 300 300	i Milit kana yana			T 745 786 200	***		-		- 400 MIC 200 2	a and then have over some and	1	6	0	63												~ ~		-		6.5
Day	1	2	Tee	-no	ourr	YЦ	6	ces 7	8		An	Ks 1	Th 2	ree 3	-Hou	urlv	/ I	ndi	Lce	es							rov	Ra			IMF
1 2 3 4 5	2 10 2+	10 1+ 10 0+ 10	00 0+ 2-	00 2- 2-	} •	2- 1- 10	0+ 2+ 2+	2- 3- 2+ 2- 20	1+ 2+ 1c)	6 8 11 11 17	2- 2- 3-	2 1+ 1	10 00 10 2- 10	0+ 20 2-		1- 10 1+	1- 2c 1+	- 3 > 2 + 1	- 1 - 2 - 3 + 1 + 2	- +		7 9 13 11 16		119. 124. 149. 139. 130.	1 3 0	37 41 56 88 95	34 30 50 74 89	67 72 99 88 100		
6 7 8 9 10	20 50 40	3- 2+ 7- 6- 2+	3- 70 6-	30 5- 6+		50 4+ 6-	5- 30 5-	4- 40 30 5+ 0+	3+ 3+ 40	; , 	39 44 98 106 12	2+ 5- 4+	20 7- 5+	4- 3- 6+ 5+ 2-	30 40 6-		5- 30 50	4+ 30 4+	- 4 > 3 - 6	+ 3 + 3 + 4 - 5 + 0	0 0 		32 40 84 100 11		138. 145. 149. 159. 150.	8 : 9 3	98 103 92 71 68	83 89 79 68 67	87 95 100 110 101		
11 12 13 14 15	0+ 5+ 40	00 0+ 50 50 10	10 50 4+	0+ 50 5+		10 1- 40 5- 3+	1- 50 4-	10 50 3+	1+ 5- 2+		4 5 90 64 18	0+ 5+ 5-	10 4+ 4+	1- 2- 5- 40 1+	10 5+ 50		1- 5- 5+	1- 5+ 3+	- 2 - 6 - 4	+ 2 - 2 - 5 - 3 - 3	0 † 		7 98 63 20	-	144. 138. 132. 123. 123.	7 6 8	66 73 88 94 95	60 65 80 93 89	94 88 81 72 72		
16 17 18 19 20	2+ 2- 2+	20 2- 20 10 20	2- 2+ 1+	0+ 2- 3-		1+ 1- 2+ 2+ 3-	1+ 20 3-	00 2- 2-	1- 2- 1+		15 8 14 15 22	2+ 20 2-	2+ 2- 20	1+ 3- 2+ 3- 1+	1+ 2+ 20		1+ 20 2+	1+ 2- 2+	1· 2(2·	+ 3- - 10 0 20 + 2- - 20	a o +		12 13 15 18 17	1	121. 118. 112. 112. 113.	0 2 7	76 53 51 35 46	53 49 36 34 45	70 65 59 61 66		
21 22 23 24 25	1+ 2+ 2-	20 20 2- 3- 2+	2+ 2- 2-	2- 2+ 3-		20 2- 30 30 2-	2- 30 40	1+ 2+ 40	0+ 3+ 2+		13 11 22 28 22	2- 2- 3-	2- 2- 30	1+ 20 2- 20 2+	2- 20 3-		2- 30 3+	20 30 3+	1- 3- 4-	+ 2- + 10 - 30 - 3- - 30	0 0 -		12 12 20 29 19	1 1 1	118. 123. 126. 136. 145.	0 7 7	33 41 47 59 80	39 37 51 61 86	66 71 75 86 95		
26 27 28 29 30	3- 2- 20 00	2- 30 2+ 1+ 3+	2- 10 0+ 30	2+ 00 2- 30		2+ 2+ 10 1+ 1+	3- 2+ 1- 30	1- 2- 3+ 40	0+ 10 2- 4-		16 10 13 29	3- 20 2-	2+ 3- 2-	3- 1+ 2+ 2- 30	3- 1+ 20		20 10 2-	3- 2+ 1+	1+ 2- 3+	- 2-	+ 		14 15	1	52 54 60 63	71 41 2	14 06 98	112 112 105 103 92	102 105 111 114 110		
Mean											26.4												26.	3 1	37.1	1	73.6	68 6	20 1	1	

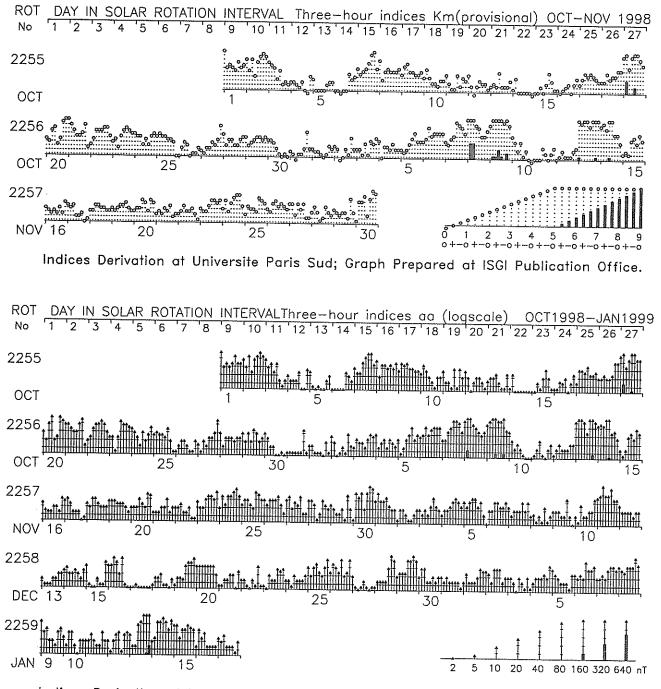

Daily Average Indices Ap Dec 1997 - Nov 1998



Day	Dec 97	Jan 98	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Ôct	Nov
1	4	4	9	16	3	9	4	5	21	18	24	4
2	4	5	3	16	3	63	7	8	6	9	32	4
3	6	3	3	4	6	62	14	8	5	8	14	6
4	6	2	8	10	8	101	7	10	7	5	3	6
5	8	3	3	9	3	42	12	16	6	5	3	8
6	4	18	3	8	4	5	15	19	64	5	3	20
7	2	28	3	3	8	10	14	4	24	6	28	26
8	1	8	8	2	7	23	10	3	7	9	15	20 66
9		9	12	2	6	13	8	15	2	8	16	75
10	18	7	8	53	16	10	15	5	15	6	7	6
11	11	6	17	28	11	11	6	11	6	6 6	6	3
12	2	4	10	14	9	13	6	6	7	12	5	4
13	1	4	6	12	4	5	5	4	5	6	5	64
14	2	3	6	10	6	4	12	2	6	4	2	41
15	3	2	3	20	4	7	7	3	4	5	4	10
							_				2012	
16	4	9	3	12	6	12	6	37	3	4	3	7
17	4	7	18	8	14	12	2	7	3	6	8	6
18	7	8	36	4	6	9	5	6	4	25	9	7
19 20	3	4 15	6 9	4 8	4 9	5	11	4	9	8	62	7
20	ວ ສະຫະຄະຫະເຫ	CI Maria ana ang	9 20102003000	0	9 388-48-48-58	12	14	3	17	5	22	10
21	4	8	4	35	7	13	14	10	4	12	23	6
22	2	.4	7	12	6	7	10	10	17	7	20	6
23	4	4	9	6	15	11	10	40	18	11	15	11
24	4	6	3	7	35	12	16	28	8	28	11	16
25	1	11	3	16	26	10	9	11	10	117	12	13
26	2	3	2	12	31	8	42	4	49	17	4	10
27	0	7	5	15	12	6	4	4	144	10	10	9
28	1	2	15	11	8	5	3	5	30	4	8	6
29	2	8		20	4	26	3	6	20	7	11	8
30	21	19		8	12	18	3	11	15	9	5	19
<u>31</u>	3	12	<u> </u>	9		4	4	29	17		5	
Mean	4	8	8	13	10	18	10	11	18	13	13	16


GeoForschungsZentraum Potsdam

PLANETARY 3-HOUR-RANGE INDICES (Kp) BY 27-DAY SOLAR ROTATION INTERVAL


Merry Christmas and a happy New Year! GTZ, Adolf-Schmidt-Observatorium Niemegk

PLANETARY GEOMAGNETIC ACTIVITY

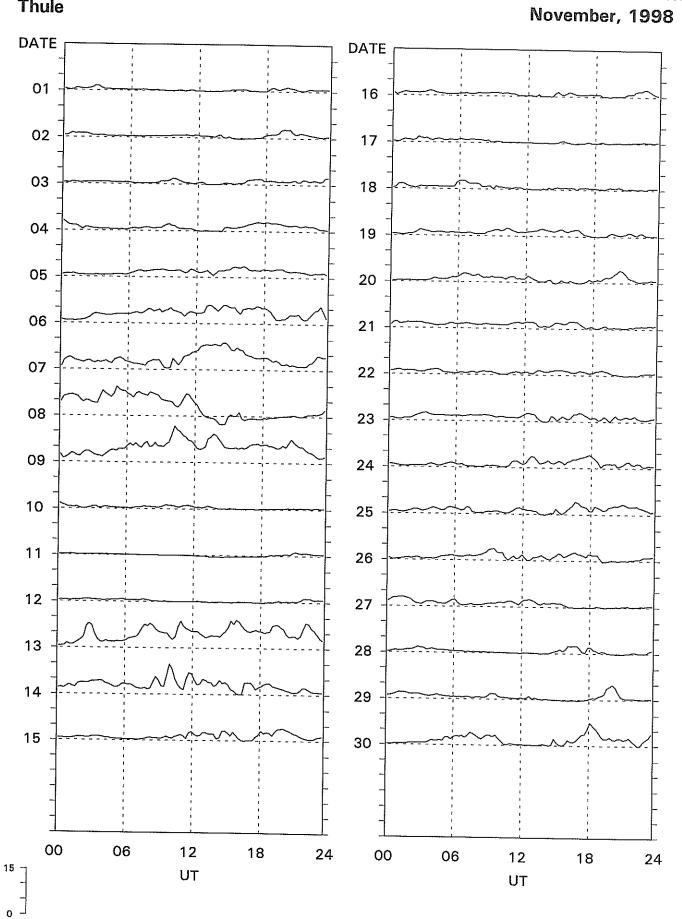
3-HOUR-RANGE INDICES Km AND as BY 27-DAY SOLAR ROTATION INTERVAL

ISGI PUBLICATION OFFICE — EMail : ISGI.PUBOFF@cetp.ipsl.fr CETP, 4 Avenue de Neptune, F—94107 Saint Maur des Fosses CEDEX — FRANCE

Indices Derivation at Universite Paris Sud; Graph Prepared at ISGI Publication Office.

WDC-C2 FOR GEOMAGNETISM, KYOTO UNIVERSITY

HOURLY EQUATORIAL DST VALUES (PROVISIONAL)


1998 NOVEMBER

. T. 24	11 11 11 11 11 11 11 11	25 53 - 100 - 100	1 111 01004 01000	111 111 10 10	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 H M 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 100NT
U 23	1	- 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 2 6 1 1 0 3 1 4 8 1 4 8	111122 1122 1154 1156	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 H H 0 0 0 H L 1	
22	0080470 11111	52 52 21 - 36 - 36	- 123 - 129 - 150	11 1 11 11 11 11 11 11 11 11 11 11 11 11	- 10 - 19 - 21 - 21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30
21	11 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20	-49 -54 -116 -103	- 23 - 123 - 127 - 64 - 46	1127	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
20	1 1 1 2 0 1 1 1 2 0 1 1 1 2 0	-61 -61 -16 -126 -36	-21 -114 -63 -41	11111 1111 12011	11101	400-40 41111	
19	75830 7111 711	-76 -76 -22 -145	100 100 100 111 111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
18	11 1100 111 1100	- 778 - 777 - 222 - 41	-23 -10 -72 -34	11 I 041111 44000		1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5
17				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111 111 121 125 125 135	11 11 00014	
16	885055 1 1 1 1 1	-82 -84 -39 -140			4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- 1 1 - 1 18 - 1 - 16 - 1 - 16 - 1 - 16 - 1 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	
15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-72 -142 -152 -	-27 -132 -97 -35	- 13 - 13 - 11 - 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50
14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-57 -67 -51 -51	-27 -18 -122 - -92	992 1117 1117	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
13	4 4 6 4 6 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 2 8 8 1 1 1 1 1 1 2 8 8 1 1 1 1	- 25 - 15 - 73 - 41		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000 11 11	
12	64100 111	- 156 - 126 - 129 - 154 - 540 - 540	1 1 1 1 1 0 0 0 0	- 12 - 12 - 10 - 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	117 141 101 101	
11	・ 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」	1	1-1-1-22 1-9-1-4- 1-9-1-6-1- 1-9-1-6-1-	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 14 - 18 - 10 - 10	15
10	1 1 0 M M	-67 -67 1102 -61	1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 3 8 1 4 1 4	-15 -15 -120 -12	エサーアー ユー	
ø	אשטאט וו		1 28 1 28 1 77 1 76 1 39	6 8 7 8 9 6 1 1 1 6 1 1	- 12 - 14 - 17 - 10 3	យលកាលយ ការ៖ !	
Ø	4424F		1111 101 101 101 101 101 101 101 101 10	11 12 12 12 12 12 12 12 12 12 12 12 12 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 122 - 12 - 3 6	
7	4 0 10 0 4 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1100 1100 1100 1100	
Ŷ	0 0 0 0 4	- 26 - 36 - 136 - 78 - 72			1 1 1 1 1 1 4 0 4 1 8 0 4 6	- 21 - 12 - 12	
ى ئ	01400100 11	-14 -135 -107 -140	- 138 - 125 - 100	- 42 - 142 - 122 - 15	- + - 	0 7 1 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
4	ግዳሪካሪ 1 1 1	1111 110 110 110 110 120 120 120 120 120	102 102 151	4 1 1 4 1 1 4 10 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	40478 1444 111	l l
ŝ	юноно 11 14 1	-19 -36 -39 -75		4 1 2 7 4 2 7 4 2 2 4 2	111 I 84540	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
NT 2	ບຕູຕູດ 1-1 1-1 1	88085 8808 1990	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 6 7 7 7 7 0 9 7 7 7 0 1 1 1	11111	00554 111 1	
TN=TINU 1	11111 11111 11111	-26 -34 -68 -27	-33 -27 -100 -52	111 111 111 111 111	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	074 1 1 2 4 3 3 7 4	1 0 9 8 7 6		20 20 20 20 20 20 20 20 20 20 20 20 20 2	2222 2432	26 27 28 30 30	1998 NÖV

Note: The baselines for the observatories were adjusted for secular change for the Provisional Dst values for November 1998.

156 Nov 98

Thule

Preliminary Values.

15-min. Values.

Sta	Geomag Lat		nencer Time (UT)		SC D (Min)	Amplitud H (Gamma)	les Z (Gamma)	Maximum 3-Hour K Index Day(3-Hour Periods)	ĸ	D (Min)	Ranges H (Gamma)	Z (Gamma)		nd Hour (UT)
НҮВ	07.6N	05	0900		* =	••		06(3,7)	5	2	126	21	07	01
AMS CZT	16.4N 46.8S 51.5S 75.2S	06 06 06 06	1555 09 09 09	 	••• •• ••	 	 	07(5) 08(3) 08(2,3) 09(1) 10(1)	6 7 7 6	6 35 36 1034	183 250 223 1005	64 239 179 691	08 10 10 10	
UJJ NGP ABG HYB PND TRD ETT HER	28.8N 13.6N 11.3N 09.4N 07.6N 02.0N 01.1N 00.7S 33.6S 57.2S	07 07 07 07 07 07 07 07 07	0815 0814 0814 0816 0814 0816 0814 0816 07 0815	SC SC SC SC SC SC SC	0.6 - 0.2 - 0.2 - 0.2 - 0.2 - 0.1 - 0.9	7 10 14 17 13 16 25 21 13.6	0 - 3 - 2 - 3 - 1 - 25 - 13 	08(3) 07(5) 07(5,6) 09(7) 08(3) 09(5,7)	6 - 6 6 6 8	13 7 7 3 - 50 172	215 158 189 185 182 193 233 187 1381	52 26 25 40 18 175 142 545	10 08 08 07 08 08 08 10	16 16 22 16 16
HYB Hyb	16.4N 07.6N 07.6N 00.7S	08 08 08 08	0616 0452 1331 0452	SC* SC SC	0.5 - 0.2 1.3	24 14 103	7 - 2 53	08(2) 09(2,3,7) 09(4)	6 7 -	8 7 	202 221 256	65 26 96	10 09 09 10	22 22
NGP Abg PND	13.6N 11.3N 09.4N 02.0N 01.1N	09 09 09 09 09	0100 0100 0100 0100 0100 0100	 	 	 	 	09(3,7)	- - 6 -	5 7 5 - 5	211 233	23 24 29 128	09 09 09 09 09	24 24 24
HYB ETT AMS CZT PAF	28.8N 07.6N 00.7S 46.8S 51.5S 57.2S 75.2S	12 12 12 12 12 12 12	17 1700 1700 18 20 20 20		 	••• •• •• ••	··· ··· ···	14(4) 13(4,5,7,8) 14(4) 13(5,7,8) 13(6,7,8) 14(5) 13(6) 13(1)	6 - 6 6 9 6	39 182	220 254 157 159 1361	33 24 112 147 201 568 755	14 14 15 15 17	20 23 00 00 12
UJJ NGP ABG PND TRD	16.4N 13.6N 11.3N 09.4N 02.0N 01.1N 33.6S	13 13 13 13 13 13	0205 0100 0100 0100 0100 0100 00	 	- 3	24 	17 	13(3,7,8) 14(4) 13(3,7,8) 14(4) 13(7,8) 14(1,4,5)	6 - - 5	7 5 6 10 4	183 218 213 220 263	74 30 22 41 93 155 156	15 14 14 14 14 14	19 19 19 19 19 19
DRV	75.28	23	12		••			26(1)	7	866	663	920	27	12
CZT	546.8S 51.5S 75.2S	29 29 29	19 18 18	• •		•••	•••	30(7) 30(7) 30(7)	5 5 7	25	102	56 71 820	01 01 02	22
NGF ABC HYE PND TRC ETT	<pre>11.3N 09.4N 07.6N 02.0N 01.1N 00.7S</pre>	30 30 30 30 30 30 30 30	0506 0506 0507 0506 0506 0506 0507 0507	SC SC SC SC SC SC SC	- 0.4 0.2 - 0.4 - 0.3 - 0.3 - 0.2 0.1 - 3.7	23 24 20 23 28 47 43 20,8	- 5 - 3 - 4 - 2 17 - 51 25 - 7.8	29(7) 30(2,3,4,6,7) 30(2,3,4,7) 01(2,3,4) 30(7,8) 01(1)	- - 4 - - 5		131 136 	 28 22 127	01 01 01 01 01 01	17 17 21 17 17

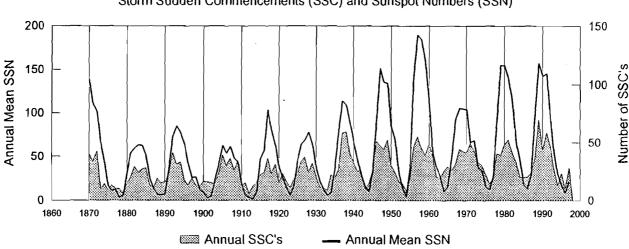
NOVEMBER 1998

Stations:

ABG = ALIBAG AMS = MARTIN DE VIVIES ANN = ANNAMALAINAGAR BJI = BEIJING CAN = CANBERRA SNO = COLLECE	CZT = PORT ALFRED DRV = DUMONT D'URVILLE ETT = ETAIYAPURAM GNA = GNANGARA GUA = GUAM HED = HEDMANIS	HON = HONOLULU HYB = HYDERABAD JAI = JAIPUR KRC = KARACHI NGP = NAGPUR PAF = PORT AUX FRANCAIS	P P S S T
CMO = COLLEGE	HER = HERMANUS	PAF = PORT AUX FRANCAIS	U

PMG = PORT MORESBY PND = PONDICHERRY SHL = SHILLONG SIT = SITKA TRD = TRIVANDRUM UJJ = UJJAIN

MAGNETIC STORM SUDDEN COMMENCEMENTS AND SOLAR FLARE EFFECTS (PRELIMINARY REPORT ON RAPID MAGNETIC VARIATIONS)


Storm	Sudden	Commencements (SSC)	Solar Flare Effects (sfe)					
Day	Time	Quality: Station Group*	Day	Begin-End	Station(s)			
07	0815	A: WNG* CLF* HRB* BJI	01	1113-1119	BDV			
		B: NAG* QUE GNA CNB*	12	0526-0550	KNY+			
		C: NUR* NGK* BDV* GCK* MMB* COI	18	0850-0908	TEN			
		SPT* KAK* HTY* KNY*	22	0633-0710	KAK+ KNY+ GNA+			
08	0451	A: WNG* COI GNA* CNB			CNB+			
		C: NGK	23	0635-0721	KAK+ KNY+ GNA+			
13	0143	B; CLF HRB COI			CNB+			
		C: GCK QUE	28	0536-0635	BJI KAK+ KNY+ GNA+			
		si: EBR			CNB+			
30	0507	A: WNG* CLF HRB* NAG* COI BJI SPT* TEN						
		B: BDV* GCK* QUE CNB						
		C: NGK* EBR*						

NOVEMBER 1998

REPORTING OBSERVATORIES (up to the 4th of January 1999):

SOD NUR WNG NGK BDV CLF HRB NAG GCK MMB EBR COI BJI SPT KAK HTY KNY QUE TEN GNA HER CNB

Three-letter codes identify each observatory. Reporting stations have been grouped by the character of the observed event. The letter A means very remarkable; B means fair, but unmistakable; C means very poor, doubtful; and - means no quality figure given. The * means that the SSC, at least in one component, was preceded by a small reversed impulse. SSCs are given only when five or more stations report the event. SFEs include all reports. If an SFE is confirmed by solar or ionospheric events, the name of the station is identified with a plus sign (+).

Storm Sudden Commencements (SSC) and Sunspot Numbers (SSN)

*U.S. GOVERNMENT PRINTING OFFICE: 1999-733-002/29021

WORLD DATA CENTER A

FOR

NO ATMOSAVERIC TAMESTICAL

SOLAR-TERRESTRIAL PHYSICS

The ICSU Panel on WDCs has recommended that it would be appropriate courtesy to acknowledge in publications that data were obtained from the originating station or investigator through the intermediary of the WDCs. The following statement is suggested:

"Data used in this study were provided by WDC-A for Solar-Terrestrial Physics, NOAA E/GC2, 325 Broadway, Boulder Colorado 80303, USA."