U.S. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Richard A. Frank, Administrator ENVIRONMENTAL DATA AND INFORMATION SERVICE Thomas S. Austin, Director # Solar - Geophysical Data NO. 414 **FEBUARY** 1979 Supplement NATIONAL GEOPHYSICAL AND SOLAR - TERRESTRIAL DATA CENTER **BOULDER, COLORADO** For obtaining bulletins on a data exchange basis, send request to: World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado 80303. For sale through the National Geophysical and Solar-Terrestrial Data Center, NOAA, Boulder, CO 80303. Subscription Price: \$34.00 annually for both part I (Prompt Reports) and part II (Comprehensive Reports) or \$18.00 annually for either part. Annual supplement containing explanation is included. For foreign mailing add \$32.00 for both parts or \$16.00 for either part. Single issue price is \$1.50 for either part and \$1.40 for the extra Issue. Make checks and money orders payable to: Department of Commerce, NOAA/NGSDC. Note: \$2.00 Minimum charge per order. To standardize referencing these reports in the open literature, the following format is recommended: Solar-Geophysical Data, 414 Part I (or Part II), pages, December 1979, U.S. Department of Commerce, (Boulder, Colorado, U.S.A. 80303). # SOLAR-GEOPHYSICAL DATA ## **EXPLANATION OF DATA REPORTS** #### INTRODUCTION This supplement contains the description and explanation of the data in the monthly publication, <code>Solar-Geophysical Data</code>, compiled by the National Geophysical and Solar-Terrestrial Data Center (NGSDC) in Boulder, Colorado, U.S.A. NGSDC is one of the several components of the Environmental Data and Information Service in the National Oceanic and Atmospheric Administration. The monthly bulletins are available on a data-exchange basis through World Data Center A for Solar-Terrestrial Physics, which is operated by NGSDC, or at a nominal cost.* These data reports continue a series that was issued by the Central Radio Propagation Laboratory of the National Bureau of Standards, beginning November 1955 and known for many years as the CRPL-F Series Part B. The title Solar-Geophysical Data was first used in 1955. The name of the organization compiling the data reports has changed many times, but the personnel involved are generally the same. From June 1965 to January 1977 the compilation and editing were done by Miss Hope I. Leighton under the supervision of Miss J. Virginia Lincoln. As of February 1977 Helen E. Coffey has become editor. Mr. A. H. Shapley is Director of NGSDC. Solar-Geophysical Data is intended to keep research workers informed on a timely schedule of the major events of solar activity and the associated interplanetary, ionospheric, radio propagation and other geophysical effects. This report series is made possible through the cooperation of many observatories, laboratories, and agencies as recorded in the detailed descriptions that follow. For many data types, the material published in *Solar-Geophysical Data* is only a small part of what is available from the NGSDC archives. The published data are considered to be in greatest demand, and thus the dissemination in this form is efficient and economical for both the user and the data center. Users are invited to avail themselves of the data services of NGSDC and the collocated World Data Center A for Solar-Terrestrial Physics. Beginning with the July 1969 issue the publication was divided into two Parts (I and II). Part I (Prompt Reports) contains data for 1 and 2 months prior to the month of publication. Part II (Comprehensive Reports) contains data for 6 and 7 months prior to the month of publication plus, from time to time, late data from earlier months. These reports may be referenced in the open literature.** It must be understood, however, that because of the rapid publication schedule, some data categories are not considered to be definitive. This applies particularly to the Prompt Reports in which such data sets are marked as provisional. Errata or revisions are included from time to time. Additions to this descriptive text will appear with the data when new material is added, or revision is made. The first two pages of each issue of Part I and II give the general contents and a running index to locate data for a specific month for the past year. A complete index for data since July 1957 is given in the blue section of the present supplement. In various places in this text, data types are identified both by name and an alphanumeric designation (A.2, C.3, etc.). The latter come from the data categories given in *Guide to International Data Exchange*, issued by the ICSU Panel on World Data Centres, Washington, D.C. 1973. A useful reference containing descriptions of many solar and geophysical phenomena as well as directing the reader to more detailed discussions is the *Handbook of Correlative Data*, issued by the National Space Science Data Center, NASA, Goddard Space Flight Center, Greenbelt, MD 20771, Feb. 1971. (The Handbook is also available through World Data Center A for Solar-Terrestrial Physics.) For sale from the National Geophysical and Solar-Terrestrial Data Center, NOAA, Boulder, CO 80303, Subscription Price: \$34.00 annually for both Part I (Prompt Reports) and Part II (Comprehensive Reports) or \$18.00 annually for either part. This supplement is included. For foreign mailing add \$32.00 for both parts or \$16.00 for either part. Single issue price \$1.50 for either part and \$1.40 for this extra issue. \$2.00 minimum charge per order. Make checks and money orders payable to: Department of Commerce, NOAA/NGSDC. ^{**}To standardize referencing these reports in the open literature, the following format is recommended (with this issue as the example): Solar-Geophysical Data, 414 Part I (or Part II), pages, February 1979, U.S. Department of Commerce (Boulder, Colorado, U.S.A. 80303). ### **TABLE OF CONTENTS** | | Page | |---|--| | Data for 1 Month Before Month of Publication | | | Alert Periods Daily Solar Indices Solar Flares Solar Radio Wayes Coronal Holes Solar Wind Measurements Solar Proton Monitoring Interplanetary Magnetic and Electric Fields Inferred Interplanetary Magnetic Field Mean Solar Magnetic Field Geomagnetic Activity Energetic Solar Particles Solar Proton Events (Provisional Data) | 5
7
10
10
11
12
16
17
18
18
19
20 | | Data for 2 Months Before Month of Publication | | | Daily Solar Activity Centers Sudden Ionospheric Disturbances Solar X-ray Radiation Solar Radio Waves Spectral Observations Cosmic Rays Geomagnetic Activity Radio Propagation Quality Indices | 23
29
32
33
36
37
40 | | Data for 6 Months Before Month of Publication | | | Active Region Summary
Hα Solar Flares
Solar Radio Waves
Energetic Solar Particles and Plasma
Magnetograms of Geomagnetic Storms | 42
42
45
51
54 | | Data for 7 Months Before Month of Publication | | | Abbreviated Calendar Record
Flare Index (by Region) | 57
58 | | Data for Miscellaneous Time Periods | | | Retrospective World Intervals
Other Data | 59
59 | | Partial List of Contributors | 60 | | Detailed Data Coverage for Solar-Geophysical Data | 64 | | Stonyhurst Disks | 64 | # DATA FOR 1 MONTH BEFORE MONTH OF PUBLICATION # TABLE OF CONTENTS | | | <u>Page</u> | |---------------------------------|---|----------------------------| | Alert Periods | | | | Н.60 | Alert Periods | 5 | | Daily Solar Indic | <u>es</u> | | | A.2, A.8
A.2, A.8
A.2 | Relative Sunspot Numbers and Adjusted 2800 MHz Solar Flux
Combined Sunspot Numbers and Solar Flux Values
Graph of Sunspot Cycle and Table of Observed and Predicted
Relative Sunspot Numbers
Prediction of Sunspot Maximum
Relative Sunspot Numbers
Daily Solar Flux Values | 7
7
7
7
8
8 | | Solar Flares | C. | | | C.1
C.1d | $^{\prime}$ H $_{\alpha}$ Solar Flares No-Flare-Patrol Chart | 10
10 | | Solar Radio Waves | | | | A.10
A.10
C.3 | Interferometric Observations East-West Solar Scans Outstanding Occurrences (SELECTED) | 10
10
11 | | Coronal Holes | | | | A.7f
A.7g | Helium D3 Chromosphere
Helium Synoptic Map | 11
11 | | Solar Wind Measur | <u>ements</u> | | | A.13
A.13a
A.13d | · · · · · · · · · · · · · · · · · · · | 12
13
14 | | Solar Proton Moni | toring | | | A.12b
A.12b | | 16
17 | | <u>Interplanetary Ma</u> | gnetic and Electric Fields | | | A.17
A.18 | Interplanetary Magnetic Field - Pioneers 8 and 9 Interplanetary Electric Field - Pioneers 8 and 9 | 17
18 | | <u>Inferred</u> <u>Interpla</u> | netary <u>Magnetic</u> <u>Field</u> (A.17c) | 18 | | Mean Solar Magnet | <u>ic Field</u> (A.3d) | 18 | | Geomagnetic Activ | ity (D.1) | 19 | | D.1h
D.1e | Boulder Geomagnetic Substorm Log
IMS Magnetometer Network Digitized Stack Plots | 19
19 | | Energetic Solar P | <u>articles</u> (A.12f) | 20 | | Solar Proton Even | <u>ts</u> (Provisional Data) | 21 | ### **ALERT PERIODS (H.60)** The table gives the Advance Geophysical Alerts (PRESTO) as initiated by (or received by) the Western Hemisphere Regional Warning Center of the International Ursigram and World Days Service (IUWDS) at Boulder, Colorado, and also by the Worldwide Geophysical Alerts (GEOALERTS) as
designated by the IUWDS World Warning Agency, Boulder, Colorado. These alerts are of the types recommended by the International Ursigram and World Days Service. A description of the IUWDS program can be found in Synoptic Codes for Solar and Geophysical Data, revised by RWC Circular Letters, Third Revised Edition 1973. This code book and its revision are available from the IUWDS Secretary for Ursigrams, G. R. Heckman, NOAA, Boulder, Colorado, U.S.A., 80303. The PRESTO messages are originated by the reporting observatory or at the Regional Warning They are for advance reporting of major events. The format of these messages follows (extracted from Synoptic Codes for Solar and Geophysical Data): #### PRESTO - 1. Content. - Report of major events to the other RWC and to the local or regional customers. - General form. PRESTO observatory JJHHmm Definition of symbols. PRESTO = key word for RAPID reporting of major events observatory * name of reporting observatory in clear text JJHHmm = Greenwich date and time of issue of message in hours and minutes UT report = one or more of statements as below #### For GEOMAGNETIC ACTIVITY MAGSTORM BEGINS JJH Hmm report STRONG MAGSTORM IN PROGRESS JJHHmm (A≥50) WEAK MAGSTORM IN PROGRESS JJHHmm (30≤A<50) One may add plain language comments related to auroral reports or Forbush effect expected #### For MAJOR FLARES SOFLARE - importance class - coordinates (i.e. N20 E78) - JJHHmm (date and time) - "duration in minutes given" or statement "in progress" > One may add plain language comments like "Y-shaped" or "covering spots" or "suspected proton flare" Note: For TENFLARE (solar radio emission outburst at 10 cm > 100% TENFLARE (solar radio emission outburst at 10 cm > 100% over background) TENFLARE - XX units - JJHHmm for onset - duration in minutes, or statement "in progress" at the time of PRESTO, or statement "observed until hours and minutes UT" Units give the increase of the flux density over the pre-burst Level in conventional units (10⁻²² wm⁻² Hz⁻¹) by significant digits and words such as "1700 units over backgound" #### For PROTON EVENT COSMIC RAY INCREASE - JJHHmm - percent increase above normal based on neutron monitor POLCAP ABSORPTION - JJHHmm - dB of absorption by riometer or ionospheric forward scatter technique PROTON EVENT - JJHHmm - specify energy range from a spacecraft report > Notes: 1. PRESTO should be circulated as soon as the event has been recognized. - The PRESTO will only report events and no forecasts. Any change of a forecast would be sent to the interested customers as a GEOSOL, GEOALERT or in plain language. - If the observatories follow this scheme, it is not necessary to report the kind of experiment SOFLARE signifies a chromospheric report TENFLARE signifies a centimetric outburst COSWIC RAY INCREASE signifies a neutron monitor count increase POLCAP ABSORPTION signifies a ground based polar cap report PROTON EVENT signifies spacecraft reports The GEOSOL or GEOALERT messages are originated by the Regional Warning Center or by the World Warning Agency in Boulder, Colorado. They report the current level of solar activity and forecast solar-geophysical events. The format of these messages follows: GEOSOL GEOALERT 1. Content. - For sending combined data and forecasts to other RWCs and for general data users - For sending ADVICE information to other RWCs - General form. GEOALERT GEOSOL IIINN **DDHHmm** date time group of message in UT warning center of origin, serial number of message key word - [use GEOALERT when ADVICE included in message] 2cccd 9ннјј laaab 3eeef 4gggh cosmic ray intensity and events geomagnetic A index and events 10 cm flux and number of bursts relative sunspot number, and number of new spot groups signifies indices for preceding 24 hours follow ``` repeat for each region QXXYY nnijk ...FLARE JJHHmm QXXYY heliographic coor- dinates of flare date and UT of Outstanding flare key word CLASS X: total number of flares, number > Imp I, number of M and X flares in active region heliographic coordinates of active region MAGSTORM JJHHmm 8ннјј key numbers and observa- tions used for forecast key numbers signify solar forecast to follow for day date and UT of beginning of magnetic storm key word may be repeated or omitted QXXYY ZZZZZZ···ZZZZ QXXYY __ALERT FIN end of message type of alert active region description MAGFLARE heliographic coordinates of active region Definition of symbols. GEOSOL = key word for sending combined data and forecasts GEOALERT = key word for sending combined data and forecasts including ADVICE information III = warning center of origin WEU - Meudon TOK - Tokyo WWA - Boulder (SOLTERWARN) SYD - Sydney MOS - Moscow DAR - Darmstadt NN = originating center's serial number DDHHmm = date (DD) hour (HH) and minutes (mm) in UT of issue of message 9 = key number to indicate indices follow HHJJ = the middle of the 24-hour period for which the indices apply in UT; HH - hour; JJ - date 1 = key number to indicate sunspot data follows aa = relative sunspot number (Wolf number) b = number of new sunspot groups that have appeared (by rotation or birth) during this period 2 = key number to indicate 10 cm solar flux data follows ccc = value of 10 cm solar flux in 10-22 wm-2 Hz-1 units d = number of known IMPORTANT 10 cm bursts during this period period 3\, = key number to indicate magnetic activity follows eee = A_{\rm k} index for Greenwich date important event, if any, where 0 - no event follow 1 = end of magnetic storm 2 = storm in progress 6 = gradual storm commencement 7 = sudden storm commencement(sc) 0 = none 1 = solar radio observations 2 = partial solar optical 8 = very pronounced sudden storm commencement observations 4 - key number to indicate cosmic radiation data observed by neutron monitor follows of a median level in thousandths of an arbitrary normal level h a important event, if any, where h important event, if any, where 0 no event 1 mere-decrease 2 beginning of a Forbush decrease 3 Forbush decrease in progress 4 end of Forbush decrease 5 arrival of solar particles (GLE) q quadrant (holiographic coordinates) of the active region where 1 NE (north-east) 3 me SW (south-west) 2 SF (south-east) 4 me W (north-west) [XX distance to central meridian in degrees (longitude) when these are used, QXXYY omitted heliographic location of active region QUIET = less than one chromospheric event per day ERUPTIVE = at least one radio event (10cm) and several chromospheric events per day (Class C Flare) ACTIVE = at least one geophysical event or several larger radio events (10cm) per day (Class M total number of flares m i - number of flares greater than Importance I j - number of M Flares k - number of class X flares ``` I in this region during this period Note: Definitions of class C, M or X flares follow: CLASS C: A solar flare which is not associated with significant X-ray production. CLASS M: Solar flares which are accompanied by significant X-ray production, greater than 10⁻²ergs cm⁻²sec⁻¹ in 0-84 band, or 10⁻³ergs cm⁻²sec⁻¹ in 0.5-5A band, comparable SID (SWF or SPA). Solar flares which are accompanied by great X-ray production, greater than 10-1 ergs cm⁻²sec⁻¹ in 0-8A band, or 10⁻²ergs cm⁻²sec⁻¹ in 0.5-5A band, comparably great SID, or by a 10 cm radio noise outburst of more than 1000 flux units over background and duration greater than 10 minutes. This classification is designed to give an indication of the geophysical effect which indication of the geophysical effect which is likely to be associated with a solar event. Class C events will usually be accompanied by only minor sudden ionospheric disturbances (SID), class M by significant SID, and class X by major SID. OUTSTANDING EVENTS ...FLARE = key word to indicate OUTSTANDING event data follows, where PROTONFLARE - protons from this flare have been observed in the earth's vicinity - a geomagnetic and/or cosmic storm has been associated with this flare MAJORFLARE - this flare is the basis for the forecast of geomagnetic storm, omic storm and/or protons in the cosearth's vicinity JJHHmm = UT of beginning of OUTSTANDING flare Q = quadrant of the OUTSTANDING flare location, where 1 = NE (north-east) 3 = SW (south-west) 2 = SE (south-east) 4 = NW (north-west) XX = distance to central meridian in degrees YY = heliographic latitude in degrees heliographic location of OUTSTANDING FLARE ${\tt MAGSTORM} = {\tt key}$ to indicate magnetic storm data follows ${\tt JJHHmm} = {\tt UT}$ of beginning of magnetic storm Omit these groups if no events to be re-Use clear text if event does not correspond to conventional classification. Include data from earlier PRESTO messages for this period. DETAILED FORECASTS 8 = key number to indicate 24-hour forecast information follows HHJJ = the UT hour (HH) and date (JJ) of the beginning of the 24-hour forecast period 7777 = key numbers to indicate available local observatories follow C = definitions of available local observatories, where 0 = none 3 = all (optical and radio) 4 = all including solar magnetic field measurements Q = quadrant of PREDICTED ACTIVE REGION, where 1 = NE (north-east) 3 = SW (south-west) 2 = SE (south-east) 4 = NW (north-west) XX = distance to central meridian in degrees YY = heliographic latitude in degrees heliographic location of ACTIVE REGION at HHJJ ZZZ···ZZZ = key word to describe the PREDICTED ACTIVE REGION, where SPOTNIL - indicates spotless disc PLAGENIL - indicates spotless disc free of calcium plage PROTON = at least one high energy event (Class X Flare) #### Notes: 1. Events are classified as below: Chromospheric Events: some flares are just Chromospheric Events without Centimetric Bursts or Ionospheric Effects. (SID). (Class C flare) - Radio Event: flares with Centimetric Bursts and/or definite Ionospheric Event. (SID). Geophysical Event: flare (Importance two or larger) with Centimetric Outbursts (maximum of the flux higher than the Quiet Sun flux, duration longer than 10 minutes) and/or strong SID. Sometimes these flares
are followed by Geomagnetic Storms or small PCA. (Class M flare) High Energy Event: flare (class two or more) with outstanding Centimetric Bursts and SID. High Energy Protons are reported at the Earth in case of most of these events occurring on the western part of the solar disk. (Class X flare) - Some quiet groups being of very little importance, these can be reported only by their number. $\,$ - If the word CAUTION is inserted between QXXYY group and the description word, it signifies one cannot forecast real evolution of the group at time of the message. - If the word DOUBTFUL is inserted between QXXYY group and description word, it signifies it is impossible to determine definitely the true class of activity expected. #### ADVICES AND ALERTS ---ALERT--- key word(s) to describe one or more of the fol-lowing situations during the next 24 hours or SOLNIL) End of active period PROTONNIL Beginning of period of very low activity SOLQUIET - No active regions on the solar disk MAGQUIET - Only sporadic weak geomagnetic activity SOLALERT JJ/KK - increased solar activity expected between days JJ and KK MAGALERT JJ/KK - increased geomagnetic activity expected between days JJ and KK MAJOR FLARE ALERT JJ/KK QXXYY - large bright flare (Class X) expected between days JJ and KK in region QXXYY PROTON FLARE ALERT JJ/KK QXXYY - protons expected in earth's vicinity as a result of proton flare predicted to occur between days JJ and KK in region QXXYY PRESTO PROTON ARRIVAL ALERT KK/JJHHmm - forecast of arrival of protons in earth's vi-cinity on day KK from flare which occurred on day JJ at HHmm (UT) STRATWARM STARTS ____ includes day of week and geographical area STRATWARM ENDS - The Alert section is always included in the GEO-ALERT code format as it is used as ADVICE by $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ Notes: 1) RWCs & WWA. - More than one type of Alert may be included in a message - message Previous transmission of ALERT (SOL, MAG, MAJOR FLARE, PROTON FLARE, PRESTO PROTON ARRIVAL) requires the eventual transmission of appropriate NIL (SOL, MAG, PROTON) Transmission of STRATWARM STARTS or EXISTS requires the eventual transmission of STRATWARM TMNG GEOALERTS are converted by WWA to plain language and broadcast on WWV and WWVH as described in Circular letter RWC-123. ## DAILY SOLAR INDICES (A.2, A.8) Relative Sunspot Numbers and Adjusted 2800 MHz Solar Flux -- The first table presents Zürich relative sunspot numbers, R_7 , for the month. The corresponding data for 11 earlier months are reprinted to permit the trend of solar activity to be followed. On the same page is presented a similar table of 12 months of daily solar flux values at 2800 MHz adjusted to one Astronomical Unit, S_a , as reported by the Algonquin Radio Observatory (ARO) of the National Research Council near Ottawa. Combined Sunspot Numbers and Solar Flux Values -- The next table gives several available daily indices for the month preceding that of publication. In addition to the calendar date, the table gives the day-number of the year and the day-number of the standard 27-day (solar rotation) cycles. The data presented are Zürich relative sunspot numbers, (R_7) , American relative sunspot numbers $(R_A^{'})$, daily solar flux values at 2800 MHz, (S), and daily solar flux values, (S_a) , from Sagamore Hill, adjusted to 1 A.U. for 15400, 8800, 4995, 2800, 2695, 1415, 606, 410 and 245 MHz. Graph of Sunspot Cycle and Table of Observed and Predicted Relative Sunspot Numbers -- The graph shows the mean cycle, the most recent cycle (Cycle 20, 1964-76), the observations to date of Cycle 21, and the 12th month ahead predictions for Cycle 21. All are shown on the same time base which is that for Cycle 21, beginning with the sunspot minimum at June 1976. All data in the graph and in the succeeding table are smoothed Zürich relative sunspot numbers, which are defined as: $$R_{12} = 1/12 \left\{ \sum_{n=5}^{n+5} (R_k) + 1/2 (R_{n+6} + R_{n-6}) \right\}$$ in which R_k is the mean value of R for a single month k and R_{12} is the smoothed index for the month represented by k = n. The predicted sunspot numbers in the table (and for the 12th month after the latest observation point in the graph) are computed using the method of A.G. McNish and J.V. Lincoln [Trans. Am. Geophy. Union, 30, 673-685, 1949] and modified using regression coefficients and mean cycle values computed for Cycles 8 through 20. The 90% confidence interval is shown by parentheses for each month of predictions in the table and by a bar on the graph. This gives an indication of the uncertainty above and below the predicted number. The predictions are always based on the latest observed data available and will change each month as a new observation is included in the calculations. Final Zürich sunspot numbers, as they become available, are used in deriving the smoothed data. Prediction of Sunspot Maximum -- The table gives month-by-month predictions for the whole period of Cycle 21 by the McNish-Lincoln method. However, this method (autocorrelation) is most suited only for the first 12 months following the last observed value. From that point the predictions regress even more rapidly toward the mean value of Cycles 8 to 20. Thus while the table shows a predicted value for the epoch of sunspot maximum, the reliability of the McNish-Lincoln prediction this far in the future is relatively low. Other methods may also be considered for predicting the smoothed sunspot number at maximum. The method of Ohl [A. I. Ohl, "Forecasting of the Maximum Wolf Number for the Current Eleven-Year Cycle", Problems of the Arctic and Antarctic, 28, 137-139, 1968] relates the intensity of recurrent geomagnetic activity at the very beginning of a solar cycle to the smoothed sunspot number at the maximum of that cycle. A thorough examination and application of the Ohl method by Sargent [H. H. Sargent III, "A Prediction of the Next Sunspot Maximum", EOS, 58, 12, 1220, December 1977] predict a maximum smoothed number of 154 for Cycle 21. Kane has also prepared a method similar to Ohl's and predicts a large maximum smoothed number, (R.P. Kane, "Predicted Intensity of the Solar Maximum", Nature, 274, 139-140, July 1978. Still other methods of predicting the maximum, such as those using spectral analysis of past records and those involving planetary influence, have resulted in a wide range of predicted maximum numbers of Cycle 21, ranging from very small to very high values, depending on the statistical method used in treating essentially the same data base. For this reason of non-uniqueness, these methods are not considered in the predictions published here. A number of published predictions also include in their data base the "observed" data from Cycles 1 to 7 despite the fact that McNish and Lincoln showed those early data to be from a different statistical population. Recent work [J.A. Eddy "The Maunder Minimum", *Science*, 192, 1189, 1976] has also found discrepancies in the observational data prior to 1848. Each month a footnote to the table gives a consensus prediction of the smoothed Zürich relative sunspot number at the next maximum epoch. This takes into account the predictions by both the McNish-Lincoln and the Ohl-Sargent methods (the latter does not change with later observations). This consensus prediction is prepared jointly by NGSDC staff and the staff of the NOAA Space Environment Services Center and represents the best estimate of NOAA for the coming maximum. When new methods of analysis that provide improved predictions are published, they will be considered in arriving at the consensus prediction. <u>Relative Sunspot Numbers</u> -- The relative sunspot number is an index of the activity of the entire visible disk of the sun. It is determined each day without reference to preceding days. Each isolated cluster of sunspots is termed a sunspot group, and it may consist of one or a large number of distinct spots whose size can range from 10 or more square degrees of the solar surface down to the limit of resolution (e.g., 1/25 square degree). The relative sunspot number is defined as R = K (10g + s), where g is the number of sunspot groups and s is the total number of distinct spots. The scale factor K (usually less than unity) depends on the observer and is intended to effect the conversion to the scale originated by Wolf. The provisional daily Zürich relative sunspot numbers, R7, based upon observations made at Zürich and its two branch stations in Arosa and Locarno are communicated by M. Waldmeier of the Swiss Federal Observatory. The daily American relative sunspot numbers, $R_{\text{A}}^{\ \ \ }$, are compiled by Casper Hossfield, for the Solar Division of the American Association of Variable Star Observers. The $R_{\text{A}}^{\ \ \ \ }$ observations for sunspot numbers are made by a rather small group of extraordinarily faithful observers, many of them amateurs, and each with many years of experience. The counts are made visually with small, suitably protected telescopes. Final values of R_Z appear in the <code>IAU Quarter-ly Bulletin on Solar Activity</code>, these reports, and elsewhere. They usually differ slightly from the provisional values. The American numbers, R_A ', being computed solely from observations made under favorable conditions selected from the reports of numerous observers, are final numbers and do not require revision. Daily Solar Flux Values - Ottawa-ARO --Daily observations of the 2800 MHz radio emissions that originated from the solar disk and from any active regions are made at the Algonquin Radio Observatory (ARO) of the National Research Council of Canada with a reflector of 1.8 m diameter. These are a continuation of observations that commenced in Ottawa in 1947. Numerical values of flux in the tables are in units of $10^{-22} \text{Wm}^{-2} \text{Hz}^{-1}$ and refer to a single calibration made near local
noon at 1700 UT. When the flux changes rapidly, or when there is a burst in progress at that time, the reported value, the best estimate of the undisturbed level, provides the reference level for measuring the burst intensity. The various types of outstanding events are listed separately in another table. The observed flux values have variations resulting from the eccentric orbit of the earth in its annual path around the sun. Although these radio values are suitable to use with observed ionospheric and other data, an adjustment must be introduced when the observations are used in studies of the absolute or intrinsic variation of the solar radio flux. Thus the tables show both the observed flux, S, and the flux adjusted to 1 A.U., S_{a} . The observations are made for a single North-South polarization but are reduced under the assumption of two equal orthogonal polarizations. Graphs showing the monthly mean adjusted flux and the monthly high and low values since 1947 are shown on page 9. Relative errors over long periods of time are believed to be ±2%, over a few days may be ±0.5%. The characteristics of the observations are surveyed in "Solar Radio Emission at 10.7 cm" by A.E. Covington, [J]. Royal Astron. Soc., Canada, 63, 125, 1969]. Values of the quiet sun for the minima of January 1954 and July 1964 have been derived as 65.0 and 67.2 s.f.u. using the solar flux adjusted to 1 A.U. [Covington, J. Royal Astron. Soc., Canada, 68, 31, 1974]. When the same method is applied to the daily values for 1975-76, it would appear that the basic quiet sun was observed on a number of days from March 1975 to March 1976, and that the average of the 8 quietest days is 67.3 s.f.u. A minimum value of 2.7 s.f.u. for the slowly varying component was observed in February 1976 and defines radio sunspot minimum as the slow increase in both the monthly quiet sun values and the s.v.c. continued. # SOLAR RADIO FLUX, 10.7 CM ADJUSTED TO LAU. Though experiments have indicated that a multiplying factor of 0.90 should be applied to the reported flux falues in order to derive the absolute flux values, the published flux values have not been corrected by this factor because of the number of data series that have been computerized listing these values. Maintaining homogeneity of the published series is considered more important than having the absolute flux values published. A review of the history of the absolute calibration of the Ottawa series, as well as a number of other series of observations made within the microwave region, has been prepared by H. Tanaka of the Research Institute of Atmospherics, Nagoya University, as convener of a Working Group of then Comm. 5 of URSI [H. Tanaka $et\ \alpha l$., "Absolute calibration of solar radio flux density in the microwave region," Solar Physics, 29, 243, 1973]. The numerical data for the graph shown above and a selected bibliography are given in Algonquin Radio Observatory Report No. 5, entitled "A Working Collection of Daily 2800 MHz Solar Flux Values 1946-1976" by A. E. Covington, Herzberg Institute of Astrophysics N.R.C. of Canada, Ottawa, Canada. These solar radio noise indices are being published in accordance with a CCIR Recommendation originally from the Xth Plenary Assembly, Geneva, 1963 (maintained at XIth through XIVth Plenaries), which states "that the monthly-mean value of solar radio-noise flux at wavelengths near 10 cm should be adopted as the index to be used for predicting monthly median values of foE and foF1, for dates certainly up to 6, and perhaps up to 12 months ahead of the date of the last observed values of solar radio-noise flux". Daily Solar Flux Values - Sagamore Hill -- The Sagamore Hill Solar Radio Observatory of the Air Force Geophysics Laboratory (located at 42° 37'54.36"N, 70°49'15.15"W) began operating solar patrols at 8800, 4995, 2695, 1415, and 606 MHz in 1966. The patrol was extended to 15400 MHz in 1967, to 245 MHz in early 1969, and to 410 MHz in early 1971. Flux calibrations in units of 10⁻²² Wm⁻²Hz⁻¹ are made at about meridian transit each day. All flux data are corrected to sun-earth distance of 1 A.U. Corrections are also made for atmospheric attenuation based on the following average vertical attenuations: | 15400 MHz | 0.085 dB | 1415 MHz | 0.05 dB | |-----------|----------|----------|---------| | 8800 | 0.070 | 606 | 0.045 | | 4995 | 0.055 | | | | 2695 | 0.051 | | | On October 1, 1978, the operation of the AFGL Sagamore Hill Solar Radio Observatory was transferred to Detachment 2, 12th Weather Squadron of the Air Weather Service. The Solar Radio Astronomy Section of the Trans-Ionospheric Propagation Branch of the Space Physics Division of AFGL will continue to work with this group in an advisory capacity in addition to performing its own observational and research functions. ### **SOLAR FLARES (C.1)** The $\mbox{H}\alpha$ solar flare data in Part I (Prompt Reports) are presented as a preliminary record of those flares received on a rapid schedule. Definitive data are published later in Part II (Comprehensive Reports). After 6 months the flares have been grouped and an attempt made to verify that errors in reporting have been eliminated. The explanation of these definitive flare data begins onpage 42 of this text. It includes an explanation of the column headings together with definition of the letters used in the Remarks column. A table of solar flare patrol observatories is on page 44. The solar flare reports are received from throughout the world at World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colo- rado. Observations are made in the light of the center of $H\alpha$ line unless noted otherwise. NOAA operates the flare patrol at Boulder, and NOAA provides support and jointly operates with the Ionospheric Prediction Service of Australia the flare patrol at Culgoora. Tehran is operated by the USAF using NOAA equipment. The USAF operates Ramey and Palehua. The no-flare patrol observations matching the solar flare table are given in graphical form. The observatories reporting the patrols are indicated. The dark areas at the bottom half of each day are times of no cinematographic patrol. The dark areas at the top half of the day are times of neither visual nor cinematographic patrol. ## **SOLAR RADIO WAVES (A.10, C.3)** <u>Interferometric Observations</u> -- The chart presents solar interferometric observations at 169 MHz as recorded around local noon at Nançay, France (47°23'N, 8'47"E), the field station of the Meudon Observatory. The main lobes are parallel to the meridian plane: The half-power width is 3.8 minutes of arc in the east-west direction. The main lobes are about 1° apart [Ann. Astroph., 20, 155, 1957]. The records give the strip intensity distribution from the center of the disk to 30' to the west and east. These daily distributions are plotted on the same chart giving diagrams of evolution. Points of equal intensity given in relative units are joined day after day in the form of isophotes. Four equal intensity levels have been chosen to draw the isophotes. The first level corresponds to the sun without any radio storm center. In each noisy radio region the smoothed intensity around noon is given in $10^{-22} \rm Mm^{-2} Hz^{-1}$. East-West Solar Scans - Toyokawa 3 cm -East-west drift curves of the sun at 3 cm are observed at Toyokawa Observatory (N34.83 E137.37), The Research Institute of Atmospherics, Nagoya University, Toyokawa, Japan. The array, consisting of 32 2-m paraboloids, gives an angular resolution of 1.1 arc min on the meridian. The main lobe separation is 40 arc min at local noon. The observed drift curves are normalized by the total flux measured simultaneously with the 3-cm radiometer. The quiet sun curve in the first frame is obtained by connecting the most probable lowest values in each bin of 27-day data. East-West Solar Scans - Algonquin 10.7 cm -- East-west solar scans at 10.7 cm are taken daily at the Algonquin Radio Observatory of the National Research Council of Canada (N 45°56'43", W 78°3'33") The antenna consists of an array of 32 3-m paraboloids having interference fringes separated by approximately 1°. The zero order fringe on the meridian (where most of the published curves are taken) has an east-west width of 1.5', but the width increases to 1.7' for fringes 30° from the meridian. The antennas are kept fixed during each drift curve to avoid changes in sensitivity owing to scanning, and an effort is made to maintain a constant sensitivity from one day to another. When necessary, however, the receiver gain is adjusted to accommodate large fluxes. (Antenna specification can be found in Solar Phys., 1, 465-473, 1967 and details of the antennas' performance appear in Astron. J., 73, 749-755, 1968.) The position of the limbs of the photosphere are indicated on each curve by the vertical bars at the ends of the horizontal line, which itself represents the cold-sky level. The estimated level of the quiet sun, shown at the center of the photosphere, is based on an assumed quiet sun of 60 solar flux units (one solar flux unit = 10^{-22} Wm⁻² Hz⁻¹). This level is determined for each curve by comparing the area under the curve with the total solar flux at 10.7 cm. (Prior to December 1968 the quiet-sun level was estimated each day from a calibrating noise signal inserted between the antenna and receiver. The present method was begun in December 1968 when it was discovered that the quiet-sun levels shown for September and October 1968 were approximately 8% too low.) East-West Solar Scans - Fleurs 21 cm and 43 cm -- East-west strip scans of the sun at 21 cm and 43 cm are made possible by the "Fleurs" Radio Astronomy Station of the University of Sydney, Sydney, Australia. For the east-west solar scans from the 21 cm solar radio array the fan-beam has 2' of arc reso- lution. The two short horizontal lines drawn crossing the center line indicate the cold-sky level and the estimated quiet-sun
level. The gain may differ from day-to-day. The curves have not been normalized to account for these gain variations other than by the indication of the estimated quiet-sun level. For the east-west solar scans from the 43 cm solar radio array the fan beam has a resolution of 4' of arc. The estimated quiet sun is indicated on the published profiles in the same manner as for the 21 cm scans. The curves have not been normalized for variations in gain. Outstanding Occurrences (SELECTED) -- A list of SELECTED centimeter and millimeter wavelength events at fixed frequencies is published one month following observations. Selections are made to provide 24-hour coverage as nearly as possible. See page , Outstanding Occurrences, for descriptions of the types of events and observatory characteristics. ### CORONAL HOLES (A.7f, A.7g) The helium D3 chromosphere at the solar limb is observed on a routine daily basis at Big Bear Solar Observatory using the 26 inch vacuum telescope with a Zeiss Universal Birefringent Filter which gives 0.18Å bandpass. The observations are made visually by scanning the limb and recording the regions in which the double limb characteristic of the helium chromosphere are visible. This technique enables the positions of coronal holes to be determined at the limb to an accuracy of typically ±2° in position angle, except under bad seeing conditions in which case there is a serious danger of mistaking the edge of an isolated emission patch for the coronal hole boundary. Observations made under poor seeing conditions are indicated by dashed lines. Observational and theoretical evidence that the gaps in the D3 chromosphere correspond to coronal holes has been presented by H. Zirin [Ap. J., 199, L63, 1975], who showed that the properties of the helium lines can be explained by a model in which the helium is photoionized by coronal backradiation. The weakening of chromospheric D3 in coronal holes is then a consequence of the reduced back-radiation in these regions. The results of the D3 limb scans are presented monthly and indicate the angluar extent of the double limb versus time, where the position angle is measured from the sun's north pole (0°) to south pole (180°), with a positive sign for east limb and a negative sign for west. Days for which data are missing correspond to poor seeing conditions and/or equipment maintenance periods, and do not imply that the D3 double-limb was absent. These observations are furnished by H. Zirin and A.P. Patterson of Big Bear Solar Observatory, California Institute of Technology. Kitt Peak National Observatory -- Daily full disk spectroheliograms using the HeI 10830 Å line are obtained using the KPNO vacuum telescope [Livingston et al., Applied Optics 15, 33, 1976], and 512-channel photodiode detector system [Livingston et al., Applied Optics 15, 40, 1976]. A significant amount of control of the strength of this line is due to short wavelength radiation originating in the corona and hence it is possible to infer the existence of features such as coronal holes and bright points [Harvey et al., Bull. A.A.S. 7, 358, 1975]. An example of an observation is published in the first cited reference above. The inferred position of coronal holes is outlined on each day's photographic image and transferred by hand to an equal-area cylindrical projection of the sun's surface using the Carrington coordinate system shortly after the end of each solar rotation. Ideally, inferred coronal hole boundaries are sufficiently stable and well defined that the mapping process is now finished. In practice, boundaries are frequently not stable or well defined. What is drawn then is a weighted average of the inferred boundary where more weight is given to high quality observations and to those areas near the central meridian. Tick marks at the top of the maps represent the times of central meridian longitude of the spectroheliograms used to draw the maps. The longitude at OOUT at five day intervals are shown by longer tick marks. A heavy solid line indicates a boundary which is fairly stable and well defined; a hole is almost certainly present. A dashed line means either an unstable boundary if it is connected to a solid line or that some question exists about the reality of the hole if the entire boundary is dashed. Faint lines may sometimes be visible on the reproduced maps and these are the individual day's observations. Solid black areas represent active regions or their remnants. Occasionally a filament will also be so indicated because they are sometimes hard to distinguish from active regions. The threshold for drawing active regions is variable and little significance can be placed in shape or other details. Efforts to remove the subjectivity present in the preparation of these maps are underway but until these efforts are successful, users should be very careful. Further information can be obtained from J. Harvey or W. Livingston, Kitt Peak National Observatory, P. O. Box 26732, Tucson, AZ 85726. The 10830 observations would not be made without assistance from NOAA which is gratefully acknowledged. ### **SOLAR WIND MEASUREMENTS (A.13)** Pioneer Venus Measurements -- Interplanetary solar wind data from the NASA Ames Research Center Plasma Probe on board the Pioneer Venus Orbiter are supplied by John H. Wolfe. These data include the date, the observation time in UT, the solar wind proton bulk velocity U_{H+} in kilometers/second, the density N_{H+} in protons/cubic centimeter, the temperature T_{H+} in degrees Kelvin, and the Earth-Sun-Venus (ESV) angle in degrees (see graph for location of Venus relative to the Earth). Location of Venus (Ecliptic Plane Projection) relative to the Earth (in a fixed Sun-Earth line plot) as viewed from the North Ecliptic Pole for 1979. Pioneers 6, 7, 8 and 9 -- The NASA Ames Research Center plasma probe solar wind velocity data from Pioneers 6 through 9 are supplied by John H. Wolfe. These data include the date, the Deep Space Network (DSN) coverage period, the observation time in UT, the solar wind bulk velocity U_{H+} in kilometers/second, the density N_{H+} in particles/cubic centimeter, the temperature T_{H+} in millions of degrees Kelvin, the Earth-Sun-Probe (ESP) angle in degrees and the co-rotation delay time in days. On Pioneers 8/9, the $\rm U_{H+}$, the $\rm N_{H+}$ and the $\rm T_{H+}$ are derived by a least squares computer fit of the solar wind energy distribution to a Maxwell-Boltzmann distribution in a moving frame of reference. The velocity represents the bulk of convective velocity of the solar wind. On Pioneers 6/7, the peak velocities are reported because a least squares program was not developed for these data. The co-rotation delay, τ , defined as the time in days required for a steady state solar corotating plasma beam to rotate from the space- craft to earth. A diagram showing the angular positions of Pioneers 6 through 9 with respect to the earth is shown below. Viewing from the North Ecliptic Pole onto the Ecliptic plane, note that Pioneers 6, 8, and 9 are lagging the earth and therefore the τ is positive. Pioneer 7 is leading the earth and therefore its τ is negative. The co-rotation delay depends on the heliocentric radial distance of the earth and the spacecraft, the angular separation between the earth and the spacecraft, the solar angular velocity and the solar wind bulk velocity which defines the degree of the hose angle of the co-rotating Interplanetary Magnetic Field. The equation used to compute the co-rotation delay, $\boldsymbol{\tau}_{\text{\tiny{b}}}$ follows: $$\tau$$ (in seconds) = ϕ/ω - $(r_p - r_e)/U_{H+}$ where ω is the angular velocity of the sun (in radians/second) corresponding to a 27-day solar synodical rotation period, and ϕ is the Earth-Sun-Probe angle (in radians). Locations of Pioneers 6 through 9 on 1 Jan 76 in the Ecliptic Plane relative to the Earth (in a fixed Sun-Earth line plot) as viewed from the North Ecliptic Pole. Instead of using the solar equatorial projection of the Earth-Sun-Probe (ESP) angle ϕ^{\prime} , the ESP angle itself, ϕ , is used. The error caused by this substitution can be no more than approximately 0.008 radians (0.5°), as explained in the following paragraph. Because the solar equatorial plane is inclined approximately 7.25° to the ecliptic plane, and also the ESP angles for the Pioneers are all very nearly in the ecliptic plane, the projection of the ESP angles in the solar equatorial plane, $\phi^{\rm I}$, can be related to the ESP angle, ϕ , as follows: Define ϕ as $\alpha_2-\alpha_1$. α_2 is the angle in the ecliptic plane of the Earth from the "northern crossing" side of the line defined by the intersection of the ecliptic plane and solar equatorial plane. The "northern crossing" side of this line is the side where the Earth crosses into the space to the north of the equatorial plane from the space to the south as it circles the Sun. α_1 is similarly defined for the pioneer spacecraft. Then $\phi^{\rm I}$ (the projection of the ESP angle, ϕ , in the solar equatorial plane) can be expressed: ϕ' = tan⁻¹(cos 7.25° tan α_2) - tan⁻¹(cos 7.25° tan α_1 source is observed for 1-2 hours per day, and the A difference of approximately 0.008 radians (0.5°) between ϕ^+ and ϕ occurs when $\alpha_2=45^\circ$ and $\alpha_1=135^\circ$ (or vice versa). The difference is less than 0.5° for other combinations of α_2 and α_1 . Hence using ϕ rather than ϕ^+ is sufficiently accurate for the purposes of these calculations. Solar Wind Speed from IPS Measurements at UC San Diego -- The solar wind speed is measured regularly with the three-station scintillation observatory at UCSD [Armstrong and Coles, J. Geophys. Res., 77, 4602, 1972]. The data are supplied by W. A. Coles and B. J. Rickett. The interplanetary scintillation (IPS) technique, pioneered by
Dennison and Hewish [Nature, 213, 343, 1967] yields an average velocity transverse to the line-of-sight to a distant radio source. Listed each month are the solar wind speed and an error from observations of 8 radio sources each day. (However, in a typical month only 5 or 6 sources are useful.) Each velocity is a weighted average from along the line-of-sight to the radio source, where the weighting factor decreases rapidly with distance from the sun. This spatial average is centered on an effective position (P), which is nominally at the point of closest approach of the line-of-sight to the sun, unless this point is closer to the earth than 0.3 A.U. In the latter case, P is taken to be at the point 0.3 A.U. from the earth along the line-of-sight. The heliographic coordinates of P vary slowly over the year as shown in Figure 1. Each month the solar distance (in A.U.), heliographic latitude, and the difference in longitude between the point P and the earth are tabulated at 10-day intervals. Each observation time (in UT) is also tabulated. Details of the spatial weighting function can be computed, and examples are shown in Figure 2 on the assumption of a power law shape for the density spectrum. The results are not very sensitive to the assumed density spectrum as can be seen by comparison with Readhead's [MNRAS, 155, 185, 1971] calculations for a Gaussian spectrum, but they assume spherical symmetry. Close agreement is found between ecliptic IPS observation and IMP 7 observations of the solar wind speed, when the spacecraft data are smoothed by a weighting factor proportional to the expected turbulence level [Coles, Harmon, and Lazarus, EOS, 55, 440, 1975]. Figure 2. Computed IPS weighting functions along the line-of-sight, at the solar elongation angles indicated. The density spectrum was assumed to be power law $\propto q^{-3\cdot3}r^{-4}$ (where q is wave number and r is solar distance); a source diameter of 0.25 sec of arc was also assumed. Coles and Kaufman [EOS, 55, 556, 1974] carefully analyzed the flow angle, as well as the speed, and found it to be very close to radial. Thus the regular data are analyzed under the assumption that the flow is indeed radial. This allows a least-squares estimate of the radial component of velocity and also an associated error estimate. When the solar elongation is greater than about 73°, the pattern velocity (at P) is less than the radial velocity (because the angle Earth-P-Sun is less than 90°); the tabulated velocities have been corrected for this projection effect. A further assumption is that the scintillation pattern is spatially isotropic; this introduces a second order error [Coles et al., EOS, 56, 1180, 1974] and in these preliminary data it has not been corrected. The flow angle is also estimated but is used only in editing data with poor signal-tonoise ratio. The data are not included in this table if the apparent flow angle is greater than 30° from the radial or if the speed error is greater than 33 percent of the speed estimate itself. Further analysis may yield speeds from data rejected by these criteria; those interested in particular periods should contact the authors directly. The speed estimate is derived from the "midpoint" of the correlation functions. This is found to be a reliable estimator for the solar wind speed. [See Coles and Maagoe, J. Geophys. Res., 77, 5622, 1972; Coles, Rickett and Rumsey, a review of IPS in Solar Wind Three, University of California, Los Angeles, 1974]. The solar wind speeds derived from elongated radio sources (e.g., 3C273 and 3C298) are preliminary in that a bias of less than about 10% is sometimes present; corrected data are available to anyone interested. The "peak" velocity and other parameters of the scintillations are also computed, but are not included in the monthly reports. The use of scintillation observations to obtain solar wind velocities represents part of the activity conducted by the SCOSTEP project, Study of Travelling Interplanetary Phenomena (STIP). ### **SOLAR PROTON MONITORING (A.12)** Pioneer 6 -- These data are provided by Professor J. A. Simpson and his co-workers at the University of Chicago. Cosmic-ray particle counting rates are provided for three ascending energy ranges, from 0.6 to >175 Mev/nucleon. Counting rate measurements are made by the University of Chicago cosmic-ray telescopes aboard Pioneer 6. These are supplied, when possible, hourly throughout the pass. Both instruments consist of a stack of three solid-state detectors separated by absorbers, surrounded by an anti-coincidence cylinder. The Figure shows a cross-section view of the particle telescope. Counting rates are provided for the coincidence modes D_1 \overline{D}_2 \overline{D}_4 (protons and helium nuclei 0.6-13 Mev/nucleon, electrons 400-700 kev), D_1 D_2 \overline{D}_4 (protons 13-175 Mev helium nuclei >13 Mev/nucleon and \overline{D}_3 \overline{D}_2 D_3 \overline{D}_4 (proton >175 Mev). The geometrical factors for the three coincidence modes are 5.4, 0.92, and 0.5-1.65 (see below) $\rm cm^2$ -ster, respectively. At energies above ~ 200 MeV, the last two coincidence modes become bidirectional. A detailed description of the telescope and the related electronics may be found in Fan et al. [J. Geophys. Res., 73, 1552-1582, 1968] and Retzler and Simpson [J. Geophys, Res., 74, 2149-2160, 1969]. The counting rates are prepared from quick-look data, and are subject to future revision when the final data tapes reach the University of Chicago. Times given are only approximate (time accurate to \pm 15 minutes), and the counting rates are accurate to \sim 10%. When one of the two highenergy counting rates is at the quiescent level, a symbol Q is used instead of the actual rate. For the 0.6-13 Mev proton counting rate, the quiescent level is approximately 0.08-0.15 c/s. The two highest ranges exhibit a pronounced variation of the quiescent level with the solar cycle. - A₁ Aluminized Mylar Window - D_I Lithium Drift Silicon Detector - A₂ Aluminum Absorber - D₂ Lithium Drift Silicon Detector - A₃ Platinum Absorber - D₃ Lithium Drift Silicon Detector - Da Plastic Scintillator - PM Photo Multiplier Tube Pioneer 6/7 Cosmic Ray Telescope <u>Pioneers 8 and 9</u> -- The cosmic-ray proton count rates as observed on Pioneers 8 and 9 are provided through the cooperation of Dr. W. R. Webber and Dr. J. Lezniak of the University of New Hampshire. Quick look data from telescopes "5" and "1+2" are supplied. Telescope 5 is a wide angle, two-element solid-state telescope with an energy threshold of 14 Mev for protons and 0.6 Mev for electrons. The geometric factor is approximately $8.3~\rm cm^2$ -sterad during quiet times and $4.2~\rm cm^2$ -sterad during solar flare times. Telescope 1+2 is a narrow-angle, five-element, solid-state telescope with a proton energy thres-hold of 64 Mev on Pioneer 8 and 42 Mev on Pioneer 9. The geometric factor of this telescope is 2.35 cm²-sterad. ## **INTERPLANETARY MAGNETIC AND ELECTRIC FIELDS (A.17, A.17a, A.18)** Pioneer 8 -- The Interplanetary (IP) Magnetic Field data from the NASA-Goddard Space Flight Center magnetometer on Pioneer 8 are being supplied by Franco Mariani of the University of Roma and N. F. Ness of Goddard. The data supplied are the absolute magnitude, /B/, (in gammas, one gamma equals one nanotesla) and the solar ecliptic longitude, \$\phi\$, (in degrees) of the field measured counterclockwise from the spacecraft-sun line, as viewed from the North Ecliptic Pole. The instrument is a mono-axial fluxgate magnetometer. The sensor is mounted on one of three transverse booms 2.1 meters from the spin axis and at an angle of $54^{\circ}45^{\circ}$ to the spin axis. Three samples are taken at equal intervals during one spacecraft rotation yielding three independent mutually orthogonal measurements defining the total vector magnetic field. The magnetometer incorporates an automatic inflight range switch between two dynamic range scales of \pm 32 and \pm 96 gammas for a resolution of ± 0.125 and \pm 0.375 gammas. The accuracy of the instrument is limited by spacecraft-associated magnetic fields and the sensor zero drift. A non-magnetic explosive-actuated indexing device is used to reorient the fluxgate by 180° to establish its zero level. Five bit rates are possible: 512, 256, 64, 16 and 8 bits/second. At the three higher rates, the average time interval between successive determinations of the field vector is 1.3, 1.4 and 1.75 seconds, respectively. A special purpose digital computer is included in the instrument to compute time averages of the field components when the spacecraft is operating at the low bit rates of 16 and 8. The data supplied include the date, the Deep Space Network (DSN) coverage period, the observation time in UT, the magnitude and solar ecliptic longitude of the field, as described above. The magnetic field data are sampled approximately every hour. Each hourly sample is an average over three consecutive vectors which are separated by 14 seconds or less, depending on the spacecraft bit rate. The IP sector structure at the Pioneer 8 position can be inferred from the longitudinal angle: angles between 45 and 225 degrees are associated with outward sectors, and the remaining angles with inward sectors. It is recognized, however, that the field direction, at the time of observation, may not adequately represent the direction over a period of hours. Pioneer 9 -- The Interplanetary (IP) Magnetic Field data from the NASA Ames Research Center magnetometer on Pioneer 9 are being supplied by Chas. P. Sonett and David S. Colburn. The data supplied are in magnitude, /B/, of the field in gammas and the solar ecliptic longitude, ϕ , of the field in degrees, measured from the spacecraftsun line in a counterclockwise direction, as viewed from the North Ecliptic Pole. The instrument is a triaxial fluxgate magnetometer with onboard spin demodulation and use of
appropriate filters to avoid aliasing errors. The filter time constant is adjusted to be proportional to the sampling interval. The sampling interval is 0.292, 0.583, 2.33. 9.33 and 18.7 seconds for 512, 25. 64, 16 and 8 bps, respectively. The digitization uncertainty in each component of the field is ± 0.2 gammas. The quicklook data are not corrected for sensor offset in the component along the spin axis of the spacecraft. This, in general, gives an uncertainty in the field magnitude of less than one gamma and does not affect the determination of the longitude, o. The magnetic field data are sampled approximately every hour. Each hourly sample is an average over three consecutive vectors which are separated by 18.7 second or less, depending on the spacecraft bit rate. The IP sector structure at the Pioneer 9 spacecraft can be inferred from the longitudinal angle: angles between 45 and 225 degrees are associated with outward sectors, and the remaining angles with inward sectors. It is recognized, however, that the field direction at the time of observation may not adequately represent the direction over a period of hours. The data supplied include the date, the Deep Space Network (DSN) coverage period, the observation time in UT, the field magnitude and its solar ecliptic longitude, as described above. Pioneers 8 and 9 -- The Interplanetary (IP) Electric Field data, as observed on Pioneers 8 and 9 on a real-time basis, are provided through the cooperation of Dr. F. L. Scarf from the Space Sciences Department of the TRW Group. These IP Very Low Frequency (VLF) wave data consist of a sequence of narrowband (400 Hz) signal amplitudes. The table presents the date and Universal Time (UT) when the Electric Field Potential amplitudes (in millivolts) were read. The real time 400 Hz data are selected to illustrate or characterize the activity during each pass and are being presented so that interested scientists can: - Attempt to correlate terrestriallyobserved phenomena with variations noted in the IP Electric Field intensities at the spacecraft position. - Have access to simultaneous measurements of Plasma and E-field data on each spacecraft. - Study Solar Wind fluctuations and magnetic sectoring with the E- and B-field data on Pioneer 9. Instrumental details of the Electric Field experiments are available in the following references: Pioneer 8: [J. Geophys. Res., 73, 6655, 1968] and Pioneer 9: [Cosmic Electrodynamics, 1, 496, 1970]. ### **INFERRED INTERPLANETARY MAGNETIC FIELD (A.17c)** The table shows daily inferences of the polarity of the interplanetary magnetic field. The first half of the day is based principally on magnetograms produced by the magnetometer at the Vostok Antarctic Station of the USSR. The magnetometer of the U.S. Air Weather Service operated at Thule by the Danish Meteorological Institute is used for the second half of the day. The inference relies on the studies of Mansurov [Geomag. Aeron., 9, 622-623, 1969] and Svalgaard [Geophys. Pap. R-6, 11 pp. Dan. Meteorol. Inst., Copenhagen, 1968] relating the variation of the polar cap magnetic field to the polarity of the interplanetary magnetic field. During 1972, the inferred polarity agreed with spacecraft observations on 83% of the days for which a definitive polarity was inferred. The rate of successful inferences for "toward" (interplanetary field directed toward the sun) days was somewhat greater than "away" days, 85% and 80%, respectively [Russell et αl ., J. Geophys. Res., 80, 4747, 1975]. Forming a combined index from the two individual station inferences yields an overall success rate of 87% [Wilcox et al., J. Geophys. Res., 80, 3685, 1975] It appears that the sign of the east-west component of the interplanetary field is actually being inferred [Friis-Christensen $et\ al.$, J. $Geophys.\ Res.$, 77, 3371, 1972], rather than the polarity toward or away from the sun. Russell and Rosenberg [Solar Phys., 37, 251, 1974] show that the east-west component is an accurate predictor of the magnetic polarity approximately 90% of the time. On "toward" days incorrectly inferred to have "away" polarity in 1972, the average Ap index was 20% less than the average Ap index on "toward" days. "Away" days incorrectly inferred to be "toward" days had no significant geo- magnetic bias [Russell et al., 1975]. This effect when combined with the success rate results in a slight (2.5%) bias of the average Ap index for all inferred "toward" days over inferred "away" days. The subject of inferring the polarity of the interplanetary magnetic field has been reviewed by Svalgaard [Correlated Interplanetary and Magnetospheric Observations, D. Reidel, 1974]. The effect is visible at Vostok in the first half of the Greenwich Universal Day and at Thule in the second half of the day. The inferences from Vostok and sometimes from Thule are made at the Institute for Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), Moscow, and are shown in the table as the first value (or set of values) each day. The inferences from Thule are made at the Space Environment Services Center, Boulder, Colorado, and are shown as the second value (or set of values) each day. If two values are shown for a half-day period, an apparent change of polarity occurred within that half day. The notation adopted for the table is that T represents days of negative Y-solar magnetospheric interplanetary magnetic field which would be characteristic of a "toward" sector and A represents days of positive Y-solar magnetospheric field, i.e., "away" polarity. An asterisk along with an A or T indicates half days when the effect was somewhat doubtful, but one polarity seemed predominant. An asterisk alone indicates half days when no clear polarity effect could be discerned. A dash indicates half days when missing data prevented inference of the polarity. #### MEAN SOLAR MAGNETIC FIELD (A.3d) Sun-as-a-star integrated light measurements of the solar magnetic field are made daily at the Stanford Solar Observatory. The instrument is a Babcock-type magnetograph attached to a 23m vertical Littrow spectrograph. The mean field measurement represents a weighted average of the net magnetic field on the visible disk of the sun. The weighting arises from a variety of sources including limb darkening, solar rotation, and weakening of the line in magnetic regions. The difference in weighting between integrated light observations and averages of regular magnetograms is primarily due to limb darkening. An individual mean field observation consists of a measurement of the mean magnetic field seen in the line Fe I 5250Å and a measurement of the instrumental zero offset in the magnetically insensitive line Fe I 5124Å. A complete observation, including several checks for instrumental errors, takes about 20 minutes. Several observations are made each day. The reported value is a weighted average of all observations for the particular local day. The daily observations are usually centered about local noon (2000 UT). The uncertainty in each day's mean field is about 2 micro-teslas (0.02 gauss). The observations started on May 16, 1975. A more complete explanation of the observation program may be found in the report "The Mean Magnetic Field of the Sun: Observations at Stanford" [P. H. Scherrer et al., Solar Physics, 54, 353-361, (1977)]. The data are provided in two forms: a simple tabulation by date and a Bartels rotation type polarity diagram. In the Bartels diagram the data have been shifted 5 calendar days to allow for sun-earth transit time for easier comparison with at-earth observations. For further information contact P.H. Scherrer or J.M. Wilcox, Stanford Electronics Labs., Stanford University, Stanford, California 94305. ### **GEOMAGNETIC ACTIVITY (D.1)** Boulder Geomagnetic Substorm Log -- This is a tabulation of substorm occurrences as observed in Boulder. A substorm is a localized geomagnetic disturbance which usually occurs near local midnight and is restricted in longitude. However, the current systems developed during a substorm affect ground magnetometers in the entire nighttime sector. Additionally, individual substorms may occur at local times, away from midnight, and may be as large as 24 hours (global) in longitudinal extent. By noting the time, location and scale of a substorm, one may estimate the effect of a substorm at a specific location. Among the many substorm effects are ionospheric effects (which influence radio communications) and telluric effects (which may disturb long distance electric power and communications systems). The familiar aurora is a visible manifestation of the geomagnetic substorm. Currently, the Log provides the date, onset time (in UT) and direction (from Boulder) of each substorm. The direction is listed as "East", "West" or "Centered" (over Boulder). The comment section further describes the geomagnetic field for a particular day. These data are prepared by the NOAA Space Environment Services Center, Boulder, Colorado, 80303. IMS Magnetometer Network Digitized Stack Plots -- The IMS (International Magnetosphere Study) North American Magnetometer Network is neither exclusively N. American nor entirely composed of magnetometer installations. The lists below contain locations in S. America, the Caribbean and the Pacific Ocean. In addition to magnetometers and riometers, at some sites there are all-sky cameras, ionosondes, photometers and auroral backscatter or incoherent scatter radar units. The Department of Energy, Mines and Resources (EMR), Canada, and the U.S. Geological Survey operate the principal networks of magnetic observatories on the N. American continent and some W. Hemisphere island sites. From time-to-time these have been supplemented by observations made by university or industrial research groups. The 1974 report "International Magnetospheric Study --- Detailed Plan for a U.S. Ground-Based Research Pro- gram" (National Academy of Sciences)
recommended that the U.S. National Science Foundation support the creation of a number of digital magnetic observatories in the auroral zone of N. America and at a few other sites. In cooperation with the Canadian government (EMR) and the University of Alberta, this effort is being integrated with their IMS programs. Three meridional chains and one longitudinal chain of magnetometers (and riometers) are operated at high latitudes and a widely-spaced longitudinal network at midlatitude. Data from as many as 25 of the sites are collected by relay from the instrument platforms to the SMS/GOES satellites then to the Space Environment Laboratory of NOAA's Environmental Research Laboratories in Boulder, Colorado USA. These data are available in quick-time through the SELDADS system and transferred to the World Data Center A for Solar-Terrestrial Physics. From the data center they will be distributed upon request in magnetic tape, printed or microfilm format. The first satellite telemetry relay of magnetometer and riometer data was for February 1978. Data from the following chains of stations are currently being received at the data center: | ALASKAN CHAIN | International 3-letter code | |--|--| | Fort Yukon Tàlkeetna Johnson Point Sachs Harbor Cape Parry Inuvik Arctic Village College | FYU
TLK
JOP
SAH
CPY
INK
AVI
COL | | FORT CHURCHILL CHAIN | | | Pelly Bay
Gillam
Rankin Inlet
Eskimo Point
Back
Island Lake | PEB
GIM
RIT
EKP
BKC
ISL | | | International <u>3-letter code</u> | | International 3-letter code | |---|------------------------------------|---|--| | EAST-WEST CHAIN | | MID-LATITUDE CHAIN | | | Lynn Lake
Fort Smith
Fort Simpson
Norman Wells | LYN
FSM
FSP
NOW | Tucson
Tahiti
Honolulu
Midway
Eusebio
San Juan
Boulder
Wake Island | TUC
TAH
HON
MDY
EUS
SJG
BOU
WKE | ### **ENERGETIC SOLAR PARTICLES (A.12f)** GMS/SEM Proton, Alpha and Electron Data --The Space Environment Monitor (SEM) aboard the Japanese Geostationary Meteorological Satellite (GMS) -- "HIMAWARI" or "Sunflower" -- has 7 proton channels, 5 alpha particle channels and 1 electron The direction of all fields of view is perchannel. Table 1 lists the channel names and charac-pendicular to the satellite spin axis, which is teristics. Scanning of all channels is repeated in every 16.4 seconds. Data are sent by T. Kohno. The satellite is in a geostationary orbit at longitude 140°E, altitude ∿ 35788 km, local midnight 1440 UT. The instrument consists of 5 single-detector units. Particle type/energy can be observed by a combination of moderator and detector and by appropriate pulse height discriminations. Figure 1 shows a cross-sectional view of the detector system. Geometric factors for each detector (D1-D5) can be separated into two values: 0.0421 cm2·sterad for D1 and D2 with relatively narrow acceptance angle; and 0.389 cm²·sterad for D3-D5 with wide acceptance angle. The characteristics of each detector and their moderators are summarized in Table 2. Each channel's detection efficiency has been calculated. The direction of all fields of view is perparallel to the Earth's axis. The satellite spin rate is 100 rpm, and the particle accumulation time of all channels is 0.992 second. Thus, the counting rates represent an average over 1.68 satellite revolutions. GMS was launched on July 14, 1977, and after a test operation period, continuous (24 hour a day) data acquisition began February 5, 1978. Because a special data recovery effort was made for the observations during September 18 - 26, 1977, nearly all data of that period were obtained. Data quality at present is good except for some noisy channels during quiet times. For each event the noise level is measured by the quiet day level before the event. Table 1 | Channel
Name | Detector | Particle
Type | Energy Range
MeV | G-factor
cm²∙sr | |-----------------|----------|------------------|---------------------|--------------------| | P1 | D1 | proton | 1.2 - 4 | 0.0421 | | P2 | D1 | proton | 4 - 8 | 0.0421 | | Р3 | D2 | proton | 8 - 16 | 0.0421 | | P4 | D3 | proton | 16 - 34 | 0.389 | | P5 | D4 | proton | 34 - 80 | 0.389 | | P6 | D5 | proton | 80 - 200 | 0.389 | | P7 | D5 | proton | 200 - 500 | 0.389 | | A1 | D1 | alpha | 9 - 70 | 0.0421 | | A2 | D2 | alpha | 30 - 70 | 0.0421 | | A3 | D3 | alpha | 65 - 170 | 0.389 | | A4 | D4 | alpha | 130 - 250 | 0.389 | | A5 | D5 | alpha | 320 - 370 | 0.389 | | EL | D3 | electron | > 2 | 0.389 | Fig. 1. Cross-sectional view of the five single-detector units of the GMS/SEM particle telescope. Table 2 | | D1 | D2 | D3 | D4 | D5 | |------------------------|----------------------|--------------------------------|-----------------------------------|-----------------------------------|---------------------| | Detector
Type | surface bar. | surface bar. | Si(Li) | Si(Li) | Si(Li) | | Diameter | 5 mm | 5 mm | 8 mm | 8 mm | 8 mm | | Thickness | 0.33 mm | 0.4 mm | 3 mm | 3 mm | 3 mm | | Moderator
Thickness | 1.1 mg/cm²
1.25 μ | $106~\text{mg/cm}^2$ $120~\mu$ | 200 mg/cm ²
0.74 mm | 1.71 g/cm ²
2.04 mm | 9.9 g/cm²
5.8 mm | | Material | Ni | Ni | Al | Cu | W | | Channel Used | P1,P2,A1 | P3,A2 | P4,A3,EL | P5,A4 | P6,P7,A5 | #### **SOLAR PROTON EVENTS** An unnumbered page with a diagonal slash across it will be included whenever provisional outstanding solar proton events have been reported during the month before month of publication. This will be prepared by the Space Environment Services Center of the Space Environment Labora- tory. These sheets will be self-explanatory and are not to be used for research reference purposes. They will merely provide some of the immediately available evidence when significant solar proton events have occurred in the previous month. # DATA FOR 2 MONTHS BEFORE MONTH OF PUBLICATION # TABLE OF CONTENTS | | | Page | |--|--|--| | Daily Solar Activity (| Centers | | | A.6
A.6c | Hα Synoptic Charts
Stanford Solar Magnetic Field Synoptic Charts | 23
23 | | Daily Charts Inc
A.7h
A.3a, c, e
A.4
A.1
A.6
A.5
A.5a
A.5b | Coronal Green-Line Intensity | 24
24
25
25
25
25
25
25 | | Sudden Ionospheric Dis | sturbances (C.6) | 29 | | Solar X-ray Radiation | (A.11, C.5) | 32 | | Solar Radio Waves | | | | C.4
C.3t | Spectral Observations
43.25, 80 and 160 MHz Selected Bursts | 33
35 | | Cosmic Rays | | | | F.1
F.1 | Tabulated Observations
Charts | 36
37 | | Geomagnetic Activity | | | | D.1a | Table of Indices Kp, Kn, Ks, Km, Cp, Ap, aa and Selected
Quiet and Disturbed Days | 37 | | D.1ba
D.1g
D.1d
D.1f | Chart of Kp by Solar Rotations Table and Graph of Provisional Hourly Equatorial Dst Index Principal Magnetic Storms Sudden Commencements and Solar Flare Effects | 38
39
39
39 | | Radio Propagation Qua | lity <u>Indices</u> | | | B.52
B.53 | Transmission Frequency Ranges (North Atlantic Path)
Radio Propagation Quality Indices (Transmissions to
Lüchow (GFR)) | 40
40 | # DAILY SOLAR ACTIVITY CENTERS (A.1, A.3a, A.3c, A.3e, A.4, A.5, A.5a, A.5b, A.6, A.6c, A.7h) <u>H-alpha Synoptic Charts</u> -- These charts of the entire solar surface show solar activity in terms of polarity of magnetic fields, filaments (cross-hatched), major sunspots (large dots), bright $H\alpha$ plage (closely spaced lines), faint $H\alpha$ plage (stipple), distinct neutral lines (solid lines), and estimated neutral lines (dashed lines). Longitude is in terms of the mean rotation rate for sunspots as determined by Carrington. This is the heliographic longitude tabulated in *The American Ephemeris and Nautical Almanac*. The dates at the top of the synoptic chart correspond to these values, showing the time of central meridian passage for the corresponding heliographic longitudes. The charts are labeled with the serial number of the solar rotation as counted by Carrington, with the first rotation commencing November 9, 1853. The positions of magnetic polarity reversal are inferred according to the techniques described by McIntosh [Rev. Geophys. and Space Phys., 11, 837-846, 1972; also Solar Activity Observations and Predictions, McIntosh and Dryer, ed., MIT Press, 1972]. The H α structures that reveal these "neutral" lines are: filaments, filament channels, plage corridors, "iron-filing" pattern of fibrils adjacent to active centers, and arch-filament systems. The patterns are mapped by accumulating the positions of features on H α filtergrams from several consecutive days. Seldom does a single photograph show the patterns in their complete form, owing to the transient nature of the filaments and the variable observing conditions. Magnetic polarities are inferred from Hale's leader sunspots in opposite solar hemispheres have opposite polarities. Northern leaders possess positive polarity during odd numbered solar cycles, while southern leaders are negative. The present solar cycle is #21. The polarities of all areas on the sun are inferred by beginning with a leader sunspot, or the leading portion of a bipolar plage, and alternating polarities with each successive neutral line. Solar magnetograms from Kitt Peak National Observatory and sunspot polarities from Mt. Wilson Observatory are usually available for corroboration and for assistance in
mapping regions with unusual structure. Polarity information is occasionally available from the NOAA Space Environment Services Center spectroheliograph and from the U.S. Air Force SOON observatory network. The $H\alpha$ neutral-line patterns are mapped as they appeared during the latter half of their disk transits, but include active regions and filaments that may have formed even during the last day before west limb passage. The complete patterns are never visible on a single photograph, owing to the transient nature of filaments and the variable observing conditions. Every location on the sun must be studied carefully on every day of its disk transit in order to accumulate complete information on the neutral lines. Whenever a pattern undergoes a conspicuous change from the time of first visibility to the time near west limb passage, the former neutral-line position is depicted as a line with crosses, similar to a "railroad track" symbol. The charts published here are preliminary versions constructed as part of the real-time solar monitoring at NOAA's Space Environment Services Center in Boulder. These versions may often be incomplete, or even inaccurate in limited areas, due to variations in the amount and quality of the solar data available in real time. More definitive versions may be published at a later date in atlas form, using complete data from several observatories for a careful and comprehensive mapping. The date in the lower right corner of the charts is the date of last revision. The mapping techniques include comparison with previous synoptic charts for maintenance of consistency and continuity. Daily use of inferred solar magnetic field data has demonstrated a 90% reliability within active regions and at least 75% reliability in the large-scale patterns in quiet regions. The reliability is degraded in regions where estimated neutral lines (dashed lines) are used extensively. Large portions of the charts for the period near solar minimum are so delineated. Charts beginning with Carrington Rotation 1648 are constructed with a computerized readerplotter and have improved coordinate accuracy over previous preliminary charts. Stanford Solar Magnetic Field Synoptic Charts --These charts are derived from the Stanford Solar Observatory daily magnetograms (see 25). They are made by projecting each magnetogram onto a grid with points spaced each 10-degrees of heliographic latitude and longitude. For each 10 degrees of Carrington longitude, the available magnetograms are averaged together weighted with distance from central meridian and the sky conditions. The resulting synoptic charts are plotted in the same format and scale as the H-alpha charts (A.6). The symbols "v" at the top of the charts mark the times of magnetograms used. While this format provides more visual weight to higher latitudes where the observations are less accurate, it is a useful form for comparison to the H-alpha charts. The iso-Tesla lines are shown at $\pm\ 20,\ 50,\ 100,\ etc.$ micro-Tesla. The field strength shown will tend to be somewhat lower than the corresponding central meridian magnetogram due to the interpolation and averaging procedures used. Although the absolute calibration of solar magnetogram data (particularly when made with low spatial resolution) is somewhat uncertain, the position of the zero line is reasonably well determined. A direct comparison with the H-alpha inferred magnetic patterns is reported by T. L. Duvall Jr. et al. [Solar Physics, 55, 63-68 (1977)]. <u>Photographs or Charts</u> -- On two pages per day are presented several photographs or charts of active solar centers recorded at optical and radio wavelengths. For each day the ephemeris heliographic longitude, Lo, at 0000 UT, position angle, P, and center of sun, Bo, are given. Transparent Stonyhurst disks (regular or modified) are provided at the end of this publication to fit the size of the charts. Regular Stonyhurst disks have the longitude lines spaced in intervals of 10° east and west of central meridian. Modified Stonyhurst disks have the longitude lines spaced at days east and west of central meridian. With the 1978 Explanation of Data Reports the small size transparencies were regular and the large size were modified. In this issue the small ones are modified and the large regular. Though a magnifying glass is needed to read detail, it is felt that the significant regions stand out on the scale used. For those interested, larger sizes of these photographs or charts can be made available at cost through the World Data Center A for Solar-Terrestrial Physics. These solar maps for each day include solar magnetograms, $\lambda 5303$ coronal intensities, calcium plage and sunspot tracings, and $\mbox{H}\alpha$ filtergrams. The sunspot drawings also show prominences. Details of these individual observations follow: Coronal Green-Line Intensity at 1.15R Scans of the solar corona are made with the Sacramento Peak Observatory Green-Line Coronal Photometer, designed by R.R. Fisher [AFCRL-TR-73-0696 and *Solar Phys.*, 36, 343, 1974]. The intensity of the corona is recorded at 120 points around the limb with an aperture of 1.1 arc min by chopping between the corona and sky at a rate of 100 kHz. The scans depicted here are made at 1.15R0, although at least one other height is routinely recorded. Effective September 1, 1978 (DOY 244) the assumed solar scan radius was changed permanently from a (fixed) value of 9450 spar steps to a (time-dependent) value of (radius in arcsec) x 9.57 spar steps, or 9115 spar steps on this date. Thus, prior to this date, nominal "R = 1.15" scans had been occurring at R $\stackrel{\circ}{\cong}$ 1.16 to 1.20 depending on the time of year. On 31 August the actual scan radius was 1.19. Beginning September 1, 1978, the nominal and actual scan radii are now the same. The display is in the form of a polar plot of the intensity around a circle with a radius of 10 millionths of the intensity of the center of the solar disk. The intensity at the edge of the circle is zero. Tick marks are separated by 10 millionths. Note that the horizontal and vertical scales on the graph may not be exactly the same. This is a property of the plotting unit that produced the graphs. There may also be slight changes in the scale from day to day. Models of the emissivity of the corona in the green line based on these data, useful for locating coronal holes, are available on a collaborative basis from R.C. Altrock, AFGL, Sacramento Peak Observatory, Sunspot, New Mexico 88349 USA. Mount Wilson Observatory Solar Magnetograms --The Mount Wilson Observatory solar magnetograms are computer-plotted isogauss drawings made with the magnetograph at the 150-foot tower telescope on Mount Wilson. The program is supported in part by the Office of Naval Research, the National Aeronautics and Space Administration, and the National Science Foundation. The polarities are indicated with "Plus" signifying the magnetic vector pointed toward the observer. The gauss levels are also indicated. This instrument measures the longitudinal component of the magnetic field using the line λ5250.216 Fe I. A solar magnetograph is basically a flux measuring instrument. It measures the total flux over the aperture which is being used. The magnetograph apertures are square (image slicer is used) and the raster scan lines are separated by the dimension of the aperture. This separation of the scan lines is given by the AY (DELTAY) printed on the magnetogram. The units of ΔY are arc seconds. The DELTAX represents in the same units the distance along the scan line between points at which the data were digitized. The scan is a boustrophedonic raster scan which extends for all scan lines beyond the disk. The data within about 12 arc seconds of the solar limb are not plotted. The scanning system is always oriented so that the scan lines are perpendicular to the central meridian of the sun. The cardinal points on the magnetogram refer to heliocentric coordinates so that the "N" and "S" define the rotation axis of the sun. Because the magnetic field strength measured by the magnetograph is the product of the true field strength and the brightness of the image, the fields used to make the contours have been corrected for the brightness at each point. So effects of limb darkening and variable sky transparency have been corrected. Effects due to weakening of the line profile in magnetic field regions have not been included. In general the magnetic field strengths on the map are low by about a factor of two because of these effects, but this varies somewhat with distances from the disk's center. For more details c.f. Solar Physics, 22, 402-417, 1972. It is difficult to estimate precisely the errors in the magnetic data which go into these magnetograms, and in any case, the errors vary from day-to-day. The zero level is probably accurate to a few tenths of a gauss, or better, on almost all magnetograms. The gauss scale is probably almost always accurate to 15% or better. The noise level is almost always well below the first isogauss level (5 gauss). Sometimes, because of the small scale of the reproductions, it is difficult to make out the details of the field distribution in some regions. Large scale copies of the particular magnetograms may be obtained by writing to: World Data Center A for Solar-Terrestrial Physics NOAA D63 Boulder, Colorado, U.S.A. 80303 <u>Kitt Peak Observatory Solar Magnetograms --</u> Full disk magnetograms are now made daily, weather permitting, at the vacuum telescope on Kitt Peak in Arizona. At the exit focus of the spectrograph is a Babcock-type magnetograph which utilizes as detectors a pair of 512-element silicon-diode arrays. The diode spacing, referred to the entrance slit, is one arc second. Resolution achieved depends in practice mainly on "seeing", but in any case falls to zero at this one arc second limit. At present the magnetograms are taken in the wings
of Fe I 8688.6 Å, a line selected to faithfully record network, plage and penumbral magnetic flux but which underestimates umbral flux by a factor of about two. A full disk recording is made up of four swaths and requires 37 minutes of scan time. The display of magnetograph data is by a CRT generated picture where bright represents positive flux and dark negative flux. The display intensity is non-linear in an effort to compress the dynamic range so that weak fields can be seen along with the strong sunspot fields. The noise is about 10^{17} maxwells (i.e., 15 gauss over one arc second). Blank areas indicate interfering clouds. These high resolution maps complement the Mt. Wilson isogauss charts. Detailed numeric listings exist and can be retrieved from the observatory archives. Assistance supplied by NOAA in acquiring these observations is gratefully acknowledged. For further information contact: J. Harvey or W. Livingston, Kitt Peak National Observatory, P.O. Box 26732, Tucson, AZ 85727. Stanford Solar Observatory Magnetograms -The Stanford Solar Observatory magnetograms are presented as computer-drawn plots of the sun's large scale magnetic fields. The observations are made daily with the same instrument as the mean solar magnetic field observations (A.3d) except that instead of observing in integrated light, a 6 cm image is formed at the spectrograph entrance aperture. In this mode of observation the instrument and procedures are very similiar to those for the Mt. Wilson Observatory magnetograms (A.3a). The aperture corresponds to 180 arc sec square and is scanned boustrophedonically. The scan lines are oriented E-W on the disk with the aperture stepped 90 arc sec between measurements. The scan lines are spaced 180 arc sec in the N-S direction. At each point the field data are averaged for 15 seconds with the resulting noise level less than 10 micro-Tesla. The zero level is believed to be better than 5 micro-Tesla. The field is measured in the line Fe I 5250Å with the line Fe I 5124Å used as a magnetic zero reference. A complete scan procedure with calibrations takes about 2 hours. With a 3-minute aperture the magnetogram only crudely shows regions of strong or complex fields (The Mt. Wilson and Kitt Peak magnetograms better represent these fields). The large scale organization of net fields can usually be clearly seen in the Stanford observations. The contour lines are plotted at intervals of \pm 20, 50, 100, 200, 500, etc. microTesla. The lowest three levels plotted are shown. The isoTesla lines corresponding to fields directed out of the sun are shown as solid lines. The zero line is shown as a thick solid line. The data and time given are for the middle of the observation. The equator line shown is calculated from the velocity-grams made at the same time as the magnetograms. Magnetic synoptic charts derived from these observations are also published in Solar-Geophysical Data. More details about the observations are available on request from P. H. Scherrer, Institute for Plasma Research, Stanford University, Stanford, CA 94305. Daily H-alpha Filtergrams -- The H-alpha filtergrams are furnished by the Sacramento Peak Observatory, Air Force Geophysics Laboratory, Sunspot, New Mexico. The telescope is a 10 cm (4 inch) refractor equipped with a half-Angstrom bandpass Halle birefringent filter. These photographs are supplemented by photographs provided by the NOAA Space Environment Services Center Observatory at Boulder, Colorado, using a 11 cm (4.5 inch) refractor, and by photographs from the 25 cm (10 inch) SOON telescope at Holloman Air Force Base, Alamogordo, New Mexico, operated by the U.S. Air Force 12th Weather Squadron of the third Weather Wing. Daily Sunspot Drawings -- These drawings are simplified copies of originals made at the Boulder Solar Observatory operated by the NOAA Space Environment Services Center. Sunspot groups are boxed according to a judgement of bipolar pairs based on spot group evolution and the structure of associated $H\alpha$ plage, following guidelines developed by P.S. McIntosh of the NOÃA Space Environment Laboratory. Serial numbers appearing adjacent to some of the sunspot groups are the last three digits in the McMath-Hulbert plage number. It is not uncommon for more than one bipolar group to occur within the same large calcium plage. Drawings from the Sacramento Peak Observatory or photographs from the Culgoora Solar Observatory (C.S.I.R.O., Narrabri, N.S.W., Australia) may be used when Boulder data are missing. <u>H-alpha Prominences</u> -- Drawings of prominences are added to the limb of the sunspot drawings by tracing detail from photographic prints made from the NOAA Boulder Hα patrol films. Calcium Plage Reports -- The contours are based on estimates made and reported on the day of observation. These data on calcium plage regions are as reported by the McMath-Hulbert Observatory of the University of Michigan supported by NOAA contract. They are the same regions which are summarized below, Individual Regions. Listed beside the drawings in each case are the quality of the day's observations and the initials of the observer for the day followed by a table of the plages by region number, then area in millionths of the solar hemisphere and intensity, if area ≥ 3000 millionths or intensity ≥2.5. Individual Regions of Solar Activity -- The table provides a history of each active center visible on the solar disk using data from McMath-Hulbert Observatory (calcium plages under NOAA contract), Mt. Wilson Observatory (magnetic classification of sunspots) and NOAA, Boulder (area, count and Brunner Classification of sunspots). The Greenwich date of central meridian passage of each region is given in the lead line for each region as well as prior rotation number. After the year, month, and day the McMath-Hulbert calcium plage region number is repeated followed by the latitude, central meridian distance, and heliographic longitude of the center of the region on that day. The next two columns give the corrected area in millionths of a solar hemisphere, and the intensity of the region at time of measurement on that day, on a scale of 1 = faint to 5 = very bright, referring to the brightest part of the plage. These data are based upon estimates made and reported on the day of observation. However, they have been compared with the re-evaluated data and all significant discrepancies have been corrected, either directly in the data or by means of footnotes. These data are from observations obtained and reduced by different observers on days of widely different observing quality. For the quality of the observation on each day and the identitication of the observer see daily calcium maps. The McMath-Hulbert Observatory requests that special attention be paid to the quality of observation for the days in question and to the possible personal equation of the respective observers. The sunspot data lists the Mt. Wilson* group number, the latitude, central meridian distance and heliographic longitude of each spot group and the magnetic classification and largest magnetic field strength measured in each group. The magnetic classifications are defined as follows: - AP = αp All the magnetic measures in the group are of the same polarity which is that corresponding to the preceding spots in that hemisphere for that cycle. - AF = αf All the magnetic measures in the group are of the same polarity which is that corresponding to the following spots in that hemisphere for that cycle. - BP = βp A bipolar group in which the magnetic measures indicate that the preceding spots are dominant. - B = β A bipolar group in which the magnetic measures indicate a balance between the preceding and following spots. - BF = βf A bipolar group in which the magnetic measures indicate that the following spots are dominant. - BY = $\beta\gamma$ A group which has general β characteristics but in which one or more spots are out of place as far as the polarities are concerned. - $Y = \gamma$ A group in which the polarities are completely mixed. Statements will be added to the above classifications if the group is also of the "D = δ -configuration": spots of opposite polarity within 2° of one another and in the same penumbra. The Mt. Wilson magnetic sunspot classifications are given for spot groups observed at Mt. Wilson. If a magnetic classification is based on magnetic measurements, that classification is enclosed in parentheses. When only half of the sunspot group is measured, a half parenthesis indicates which half was measured - either the leader or the follower. A magnetic classification not enclosed in parentheses is determined from the appearance of the spot groups and the plage. A blank in the classification column indicates sufficient information was not available to make an intelligent determination of the magnetic classification. Prior to July 1966 the only magnetic classifications included in the lists were those for which there were magnetic measurements. The largest magnetic field strength measured in each group is given. The number which appears under the column headed "H" is a coded representation of the largest magnetic field strength measured in the group. The field strength is only given to the nearest 500 gauss because it is felt that the uncertainties of measurement do not permit greater accuracy. These measurements are made with the line $\lambda5250.216~\text{Å(Fe~I)}.$ No correction is made for blending the Zeeman components. The code is as follows: | Code | Maximum Field
Strength in Gauss | |------|------------------------------------| | | screngen in dauss | | 1 | 100- 500 | | 2 | 600-1000 | | 3 | 1100-1500 | | 4 | 1600-2000 | | 5 | 2100-2500 | | 6 | 2600-3000 | | 7 | 3100-3500 | | 8 | 3600-4000 | | 9 | 4100-4500 | | 10 | >4500 | The area in millionths of a solar hemisphere, sunspot count and classification as observed at NOAA-Boulder are used to complete the sunspot
information. Telegraphic Ramey or Manila sunspot data are substituted when available to fill gaps in Boulder data. The initial letter is used in the table to indicate the source of sunspot information. The sunspot classification in column marked "Class" is represented by three consecutive uppercase leters. It is the revised classification devised by P.S. McIntosh of NOAA. It consists of a modified Zürich Brunner class, the type of largest spot within the group, and the relative spot distribution or compactness of the group. This classification is included in the USSPS code, IUWDS, Synoptic Codes for Solar and Geophysical Data, Third Revised Edition, p. 108, 1973. The definitions of the classification and an illustration of the types of sunspots follow. When possible, separate bipolar sets of spots are identified by measured magnetic polarities, by the positions of spots relative to lines of polarity reversal inferred from structures on ${\rm H}\alpha$ filtergrams, and by the record of birth and evolu- ^{*}The Mt. Wilson daily observations in monthly summary form may be obtained upon request from World Data Center A for Solar-Terrestrial Physics. tion of spots. If these observations are not available, the following definitions identify most unipolar and bipolar spot groups: (see Figure and definitions to follow). Unipolar Group: A single spot or a single compact cluster of spots with the greatest distance between two spots of the cluster not exceeding three heliographic degrees. In modified Zürich H-class groups, this distance is measured from the outer penumbral border of the largest spot to the center of the most distant spot in the group. Strong new spots which are clearly younger than a nearby h-type spot (see Penumbra: Largest Spot) are usually members of a new emerging bipolar group and should be called a separate group. Bipolar (Elongated) Group: Two spots of a cluster of many spots extending roughly eastwest with the major axis exceeding a length of three heliographic degrees. An h-type major spot can have a diameter of three degrees, so a bipolar group with an h-type spot must exceed five degrees in length. #### Modified Zürich Class (first upper case letter) - A A unipolar group with no penumbra. - B A bipolar group with no penumbra. - C A bipolar group with penumbra on spots of one polarity, usually on spots at only one end of an elongated group. Class C groups become compact class D when the penumbra exceeds five degrees in longitudinal extent. - D A bipolar group with penumbra on spots of both polarities, usually on spots at both ends of an elongated group. The length does not exceed 10 degrees of heliographic longitude. - E A bipolar group with penumbra on spots of both polarities and with a length between 10 and 15 heliographic degrees. - F A bipolar group with penumbra on spots of both polarities and with a length exceeding 15 heliographic degrees. - H A unipolar group with penumbra. The principal spots are nearly always the leader spots remaining from an old bipolar group. Class H groups become compact class D when the penumbra exceeds five degrees in longitudinal extent. Note that Zürich classes G and J are missing in this revision. Class G groups are included in the definition of classes E and F, and class J groups are included in class H. #### Penumbra: Largest Spot (second upper case letter) "x" No penumbra. The width of the gray area bordering spots must exceed three arc seconds in order to classify as penumbra. - "r" The penumbra is rudimentary. It is usually incomplete, irregular in outline, as narrow as three arc seconds, brighter intensity than normal penumbra and has a mottled, or granular, fine structure. Rudimentary penumbra represents the transition between photospheric granulation and filamentary penumbra. Recognition of rudimentary penumbra will ordinarily require photographs of direct observation at the telescope. - "s" Symmetric, nearly circular penumbra with filamentary fine structure and a spot diameter not exceeding 2½ heliographic degrees. The umbrae form a compact cluster near the center of the penumbra. Also, elliptical penumbra are symmetric about a single umbra. Spots with symmetric penumbra change very slowly. - "a" Asymmetric, or complex penumbra with filamentary fine structure and a spot diameter along a solar meridian not exceeding 2½ heliographic degrees. Asymmetric penumbra is irregular in outline or clearly elongated (not circular) with two or more umbrae scattered within it. The example in the figure is transitional between "s" and "a". Asymmetric spots typically change form from day-to-day. - "h" A large symmetric penumbra with diameter greater than 2½ heliographic degrees. Other than size, it has characteristics the same as "s" penumbra. - "k" A large asymmetric penumbra with diameter greater than 2½ heliographic degrees. Other than size, its characteristics are the same as "a" penumbra. When the longitudinal extent of the penumbra exceeds five heliographic degrees, it is almost certain that both magnetic polarities are present within the penumbra and the classification of the group becomes Dkc or Ekc or Fkc. #### <u>Sunspot Distribution</u> (third upper case letter) - "x" Single spot. - "o" An open spot distribution. The area between leading and following ends of the group is free of spots so that the group appears to divide clearly into two areas of opposite magnetic polarity. An open distribution implies a relatively low magnetic field gradient across the line of polarity reversal. - "i" An intermediate spot distribution. Some spots lie between the leading and following ends of the group, but none of them possesses penumbra. - "c" A compact spot distribution. The area between the leading and following ends of the spot group is populated with many strong spots, with at least one interior spot possessing penumbra. The extreme case of compact distribution has the entire spot group enveloped in one continuous penumbral area. A compact spot distribution implies a relatively steep magnetic field gradient across the line of polarity reversal. The first letter of the McIntosh classification is essentially the Brunner classification with the following exceptions: | McIntosh | types: | Ero | and | Fro | = | | |----------|--------|-----|-----|-----|---|--------------------| | | | Eso | | Fso | | class G | | | | Eao | | Fao | | | | | | Eho | | Fho | | | | | | Eko | | Fko | | | | | | Hrx | | | = | Brunner
class J | | | | Hsx | | | | Class 0 | | | | Hax | | | | | N.B. For detailed research analyses these region tabulations should be used with caution. <u>Daily Calcium Plage Index</u> -- This table provides the daily calcium plage index based on the formula by Wesley R. Swartz, Ionosphere Research Laboratory, Pennsylvania State University as published in February 1971 text. The formula is reexpressed below: Ca II_{index} = $$\left[\sum_{i} I_{i} A_{i} \cos \theta_{i} \cos \phi_{i}\right]$$ / 1000 where the summation includes all the plages visable on the day. I_i = intensity of plage i A_i = corrected area of plage i in millionths of a solar hemisphere (McMath-Hulbert Observatory data) Θ_i = central meridian distance of plage i in degrees ϕ_i = latitude of plage i. Values of this index for the period January 1, 1958 through January 31, 1971 appear in the Pennsylvania State University Ionosphere Research Laboratory Report 373(E), *The Solar Ca II Plage Index*, Wesley E. Swartz and Regan Overbeck, October 8, 1971. # SUDDEN IONOSPHERIC DISTURBANCES (C.6) Sudden ionospheric disturbances (SID) are presented in a table as one line per SID event. This table gives the date, beginning, ending and maximum time in UT of each event; an importance rating; types of SID observations; and flare, if known. The selected times of beginning, ending and maximum are usually those of a sudden phase anomaly (SPA). The time that is chosen from the SPA reporting stations is selected by taking into consideration the amplitude of the event and the time of the associated flare, if known. In the table D = greater than, E = less than and U = approximate time indicated. The importance ratingis obtained by subjective averaging of the importances reported by all stations for all the different types of SID. The importance rating is based on a scale of 1, the least, to 3+, the most important. If SPA events are not available, shortwave fade out (SWF) events are used to determine the times. The degree of confidence of identifying the event is reported by the stations as a subjective estimate. This is then evaluated to decide whether the reported event is an SID or not. From the reports believed to be SID, a wide spread index is prepared signifying that the SID is geographically widespread. The index ranges from 1 (possible-single station) to 5 (definite-many stations). Some phenomena are listed if noted at only one location, if there has been a flare or other type of flare-associated effect reported for that time. In the flare column an * represents no flare patrol as yet available for time of event, and NF means no flare observed though there was a flare patrol at that time. Consideration is also given as to whether other reports are available from that longitude on that date. Below the table are listed the stations together with the type of SID reported which were analyzed to prepare the SID event table. A second table lists the number of SID for each day by the McMath region of the associated flare, if known. The table on page 30 of this text gives the two-letter station code, the geographic location of the station and the type or types of SID information submitted. These data are made possible through the auspices of the International Ursigram and World Days Service, the U.S. Coast Guard, and private interested individual observers (AAVSO). Greater detail concerning the reporting stations can be found in "The Listing of Sudden Ionospheric Disturbances" by J. Virginia Lincoln [Planet.
Space Sci., 12, 419-434, 1964] and in earlier versions of this text. The SID stations presently active are shown on the chart on page 31 by their longitude and by the type of SID recorded. The numbers across the top at 30° intervals indicate the earliest sunrise (top) and the latest sunset (bottom) times in UT for the stations within $\pm 15^\circ$ longitude. The times are based on the summer solstice (June 22). The small triangles throughout the chart indicate the midpoint of transmitting paths for SWF, SPA, SES, and SFD for only those stations that are underlined. (Many of the non-underlined SWF stations are commercial terminals, and the location of the transmitters being recorded are not always known.) The world-wide coverage of SID effects is indicated by the density of the triangles, and will show in which parts of the world the ionosphere is studied for SID effects. The boxes around the three SCNA stations note that those stations record cosmic noise absorption with the same equipment; i.e., recorders designed by Robert Lee of the High Altitude Observatory, Boulder, Colorado. N.B. The detailed data as formerly published are available at cost of reproduction from World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado 80303. SID, sudden ionospheric disturbances (and GID, gradual ionospheric disturbances) may be detected in a number of ways: shortwave fadeouts (SWF), increases in cosmic noise absorption (SCNA), enhancement or decrease of low frequency atmospherics (SEA or SDA), sudden phase anomalies at VLF (SPA), sudden enhancements at VLF (SES), sudden phase anomalies at LF (SPA and SFA), and sudden frequency deviations (SFD). SWF -- SWF events are recognized on fieldstrength recording of distant high-frequency radio transmissions. In the coordinated program, the abnormal fades of field strength not obviously ascribable to other causes are described as shortwave fadeouts with the following further classification: Slow S-SWF (SL) <u>SCNA-SEA</u> -- Sudden ionospheric disturbances recognized on recorders for detecting cosmic noise absorption at about 18 or 25 MHz are known as SCNA, or recognized on records for detecting enhancements of low frequency atmospherics at about 27 kHz are known as SEA. : sudden drop-out and S-SWF (S) gradual recovery drop-out taking 5 to 15 minutes and gradual recovery gradual disturbance: fade G-SWF (G) irregular in either drop- out or recovery or both. SPA and SES -- Sudden phase anomalies (SPA) are observed as a phase shift of the downcoming skywaye on VLF recordings or on pulse measurements on LF recordings. An estimate of the intensity can be obtained in terms of the degree of phase shift [see Chilton, C.J., et al., J. Geophys. Res., 68, 5421-5435, 1963]. The length of path and amount of sunlight on the path must, or course, be considered. #### STATION LIST FOR SUDDEN IONOSPHERIC DISTURBANCES TABLE | CODE STATION LOCATION | SWF | SCNA | SEA | SES | SFD | SPA | |---|------|---------|-------|-------|-----|-------| | BY = BEARLEY, ENGLAND | x | | | | | | | CL = CHILWORTH, ENGLAND | ^ | l x | | | | | | DA = DARMSTADT, GFR | х | ^ | | | | | | HA = HANAII, USA | l ^ | | | | Ιx | | | HC = HERSTMONCEAUX, ENGLAND | | | x | | '` | | | HI = HIRAISO, JAPAN | l x | | -, | | | | | HU = HUANCAYO. PERU | l | | | | | | | IN = INUBO, JAPAN | " | [| | | | l x l | | JU = JULIUSRUH, GDR | l x | | | ĺ | | , , | | KN = KONA, HAWAII, HAWAII, USA | '' | | | l | Ιx | | | KU = KUHLUNGSBORN, GDR | x | | Ιx | | | x | | LO = PRESTON, ENGLAND | | | х | | | | | MC = MCMATH-HULBERT OBS., MICHIGAN, USA | х | х | | | | | | NJ = NEW JERSEY, TRENTON, NEW JERSEY, USA | | '' | | ' X | 1 | | | PU = PRAGUE, CZECHOSLOVAKIA | × | | Ιx | l x | 1 | | | RJ = RIO DE JANIERO, BRAZIL | 1 | | | | | X | | SC = ST. CLOUD, MINNESOTA, USA | | | | x | | | | SF = SOFIA, BULGARIA | | | | X | | | | SO = SOMERTON, ENGLAND | Х | | | Ì | | | | TA = HOBART, TASMANIA | | | X | X | | | | TM = TABLE MOUNTAIN, BOULDER, COLO, USA | | ļ | | | | X | | TN = TORINO, ITALY | | | | | | X | | UI = UPICE. CZECHOSLOVAKIA | | | x | | İ | | | UM = SAO PAULO, BRAZIL | | | | X | | X | | VS = VSETIN, CZECHOSLOVAKIA | | | X | | | | | AMERICAN ASSOCIATION OF VARIABLE | STAF | R OBSEF | RVERS | (AAVS | (03 | | | A1 = VALLEY COTTAGE, NEW YORK, USA | | | X | X | | | | A4 = COLUMBUS, OHIO, USA | | | x | | | | | A5 = MAHWAH, NEW JERSEY, USA | | | | | | | | A19 = LATROBE, PENNSYLVANIA, USA | | | X | | | | | A21 = LITTLETON, COLORADO, USA | | | | X | | | | A26 = LOUISVILLE, KENTUCKY, USA | | | X | | - | | | A28 = MAYFIELD VILLAGE, OHIO, USA | | | | X | | | | A30 = SUNNYVALE, CALIFORNIA, USA | | | | X | | | | A31 = MISSOULA, MONTANA, USA | Х | | l | X | | | | A34 = PINEHURST, NORTH CAROLINA, USA | | | X | | | | | A35 = BROOKLYN PARK, MINNESOTA, USA | | | | X | | | | A36 = WORTHINGTON, OHIO, USA | | | | X | | | | A37 = YAKIMA, WASHINGTON, USA | | | | X | | | | A40 = LA CRESCENTA, CALIFORNIA, USA | | | | X | | | | A45 = TARENTUM, PENNSYLVANIA, USA | | | | X | | | | A46 = PATERSON, NEW JERSEY, USA | | | | X | | | | | • | 1 | | • | • | | 000 000 - ₉2 BY SO 8 0000 2203 8 리ろ 3 0035 1629 3 9 A4 A34 A357 A A S 3 A26 A19 8 MC A45 Š 2317 1447 TYPE S 을 Z. ≥[i, Σ A30 A31 A37 A31 STATIONS, BY 2131 1232 ವ <u>\$</u> 1300 1203 ANS. 돺 ΨH 8 SID 1300 8 P 7 99 Position 귛 1321 0443 TA .곱 岦 40 1408 MERIDIONAL ಜ 8 1032 0032 8 1045 0018 8 9 0335 2228 Ę N P.U.S Ş.⊒ ន DA PU મ - 2 Sunrise(UT) 0100 Sunset (UT) 0100 2 SES SFD SPA SEA SCNA 7 Presently active SID stations are shown above. The numbers across the top at 30° intervals indicate the earliest sunrise (top) and latest sunset (bottom) times in UT for the stations within ± 15° longitude. The times are based on the summer solstice (June 22). The small triangles throughout the chart indicate the midpoint of transmitting paths for SWF, SPA, SES, and SFD for only those stations that are underlined. The boxes around the 3 SCNA-SEA stations indicate similar equipment. -- LONGITUDE International Date Line East West Sudden enhancements of signal strength (SES) are observed on field-strength recordings of extremely stable VLF transmissions. SPA recorded by LF pulse observations over a one-hop propagation path yield information more indicative of the ionospheric changes occurring at the mid-point of the path, rather than over the entire path. LF phase observations, reported in degrees, represent an increase in sensitivity over VLF observations. The phase sensitivity is directly proportional to the ratio of the frequencies for identical paths. However, since the height of energy deposition is related to the type of flare x-rays emitted, the LF measurements in conjunction with the VLF measurements will tend to indicate the x-ray intensity range. Since the LF signal can apparently be reflected from either of two layers within the D-region [Doherty, R. H., Radio Science, 2, 645-651, 1967], phase retardations as well as phase advances may occur during an SID at LF. The amplitude of the low frequency pulse observations made at Loran stations normally changes during an SID. This change is usually, but not always in the direction of a signal enhancement (SES). The height of signal absorption is below the height of signal reflection. LF amplitude observations along with the LF and VLF phase observations for any one event tend to indicate the x-ray intensities associated with that event. Amplitude changes are reported in dB to the nearest dB of voltage change. Since 6 dB represents doubling of the received signal and 20 dB represents a ten fold change in amplitude, it is obvious that many SIDs produce large effects in LF propagation. $\underline{\sf SFA}$ -- On LF amplitude recordings on paths about $1000~{\rm km}$ long, sudden phase anomalies of the type known as SFA can be detected. These are events recognized by indirect phase measurements made evident by the one-hop sky wave interfering with the ground wave. SFD -- A sudden frequency deviation (SFD) is an event where the received frequency of an HF radio wave reflected from the ionosphere increases suddenly, peaks, and then decays back to the transmitted frequency. Sometimes several peaks occur and usually the frequency deviation takes on negative values during the decaying portion of an SFD. The peak frequency deviation for most SFDs is less than 0.5 Hz. The start-to-maximum time is typically about 1 minute. SFDs are caused by sudden enhancements of ionization at E and F1 region heights produced by impulsive flare radiation at wavelengths from 10 - 1030A. A more complete discussion of SFDs can be found in Report UAG-36, An Atlas of Extreme Ultraviolet Flashes of Solar Flares Observed During the ATM-SKYLAB Missions, 1974. ### **SOLAR X-RAY RADIATION (A.11, C.5)** Naval Research Laboraroty - SOLRAD 11B (1976-023D) -- The SOLRAD 11B Satellite is in a 62,000 nm orbit. With real-time telemetry and one ground station at Blossom Point, MD, USA, solar monitoring is limited to a continuous period of from 10 to 14 hours per day. NASA provides additional coverage from remote tracking stations on a non-interference basis. The graphs presented are a pictorial display of the solar x-ray flux in the 0.5-3Å, 1-8Å, 8-20Å, and 44-60Å bands as measured by ionization chambers aboard the Naval Research Laboratory's SOLRAD 11B satellite. The data points are averages over a two minute period with extreme values suppressed. Data drop-outs due to loss of synch in the telemetry are blank on the plot. Thus the quality of the data is indicated by the continuity of the trace. A complete description of the SOLRAD 11 instrumentation is in preparation as an NRL report. Each plot gives the solar x-ray data for one complete day. The day of each plot is given by the six-digit number, denoting year, month, and day, at the top of the plot. The integers scaling the abscissa of each plot represent hours of Universal Time (UT). The ordinate of the plot is
logarithmically scaled in x-ray flux units of ergs/cm²-sec multiplied by the indicated power of ten. On the right side of the plot, each trace is labeled by the band which it represents. Below the band designation is the experiment number. The x-ray flux is calculated from the ionization chamber current, assuming that the emission spectrum can be approximated by a gray body distribution characterized by a temperature of $10x10^6 \, \mathrm{K}$ for the 0.5-3Å photometer, $2x10^6 \, \mathrm{K}$ for the 1-8Å, 2-10Å, and 8-16Å photometers and 0.5x10 $^6 \, \mathrm{K}$ for the 44-60Å photometer. The derived fluxes based on this assumption differ from those derived using other more realistic assumptions. These differences are discussed in "The Solar Output and its Variation", Ed., O. R. White, Colorado Associated University Press, Boulder, CO, 1977, pp. 287-312. Occasionally, solar charged particles cause some interference. There is no indication on the plots of such occurrences, but one should be suspicious of very high 0.5-3Å and 1-8Å levels with little variability. Additional information may be obtained from either Mr. R.W. Kreplin or Dr. D.M. Horan, Code 7175, Naval Research Laboratory, Washington, D. C. 20375 USA. # SOLAR RADIO WAVES SPECTRAL OBSERVATIONS (C.4) Solar spectral events from Fort Davis (Texas). Culgoora (Australia), Sagamore Hill (Massachusetts), Manila Observatory (Philippines), Weissenau (GFR), Dürnten (Switzerland) and Dwingeloo (Netherlands) are presented in a combined table. The contents of the table are described below: Universal (Greenwich) date Observing periods during day (UT) -- aligned with first burst from observatory Station -- HARV = Fort Davis, CULG = Culgoora, MANI = Manila, SGMR = Sagamore Hill, WEIS = Weissenau, DURN = Dürnten and DWIN = Dwingeloo. Burst indicated in wavelength band by beginning and ending times in UT together with an indication of intensity on a 1 to 3 scale, 3 the most important. Symbol "E" is used for an event in progress before the time given and "D" for one that ends after the given time. Spectral type -- I = storm bursts II = slow drift bursts III = fast drift bursts IV = prolonged continuum V = brief continuum (normally following type III bursts) CONT = continuum in close association with type III burst storms, often with reverse drift bursts and often, but not always, associated with noise storms on metric wavelengths (used by SGMR) DCIM = decimetric burst defined by very fast drift spike or group of spikes with very high degree of polarization extending usually less than one octave in or close to decimeter range UNCLF = unclassified activity See J. P. Wild, S. F. Smerd and A. A. Weiss, Annual Review of Astronomy and Astrophysics, 1, 291, 1963 for description of types I through V. Symbols appended to spectral type: B = Single burst G = Small group (<10) of bursts GG = Large group (>10) of bursts C = Underlying continuum (particularly with type I) S = Storm in the sense of intermittent but apparently connected activity N = Intermittent activity in this period U = U-shaped burst of Type III RS = Reverse slope burst DP = Drifting pairs DC = Drifting chains H = Herringbone W = Weak activity P = Pulsations MOV = Moving (Type IV) STA = Stationary (Type IV) Z = Zebra patterns (parallel drifting bands) F = Fiber bursts (intermediate drift bursts) The bursts are divided into dekameter, meter, and decimeter wavelength ranges. For the reporting stations listed below, these ranges cover approximately the frequency bands 10-30, 30-300, and 300-3000 MHz. There has been little uniformity among observatories in interpreting the intensity levels. The reason for this stems from the fact that equipment and antenna systems at different stations are different, having different gains, different dynamic ranges and saturate at different levels. The Instruction Manual for reporting solar radio emission prepared by World Data Center-C2, Toyokawa Observatory, 1975, recommends that spectral observations be given a uniform intensity classification by all observatories. These are: | Intensity
<u>Classes</u> | Flux Density in
10 ⁻²² Wm ⁻² Hz ⁻¹ | |-----------------------------|--| | 1 | <50 | | 2 | 50-500 | | 3 | >500 | Because of equipment and antenna differences this recommendation has not been followed at most observatories as is seen in the following observatory discussions: Weissenau Radio Astronomy Observatory, Astronomical Institute of Tübingen University -- This research work is supported by the University of Tübingen, Baden-Württemberg, GFR. Instrumental descriptions are given by Urbarz [Solar Phys., 7, 147-152, 1969], Urbarz [Information Bulletin of Solar Radio Observations, 25, 8-10, 1969], Kraemer [Kleinheubacher Berichte, 13, FTZ Darmstadt, 165-168], Urbarz [Z. Astrophys., 67, 321-338, 1967], H.W. Urbarz [Mittlg. Astron. Ges., Nr. 40, 220-21, Hamburg, 1976], H.W. Urbarz [Kleinheubacher Berichte, 21, 421-29, FTZ Darmstadt, 1978], H. W. Urbarz und Th. Wachter [Kleinheubacher Berichte, 21, 413-20, FTZ Darmstadt, 1978], W. Brunner, H.W. Urbarz, L.v. Zech-Burckersroda [Kleinheubacher Berichte, 22, FTZ Darmstadt, 1979, in press]. A 35mm film is used with a 0.2 mm/s feed; the sweep rate is 4 per sec. The number of resolution elements of recorded events is about 100 per octave on film. The frequency range is 30-1000 MHz; the frequency scale is stepped in 6 octave-wide channels: $30\text{-}46\text{-}86\text{-}160\text{-}290\text{-}540\text{-}1000}$ MHz, each of which is linear. The approximate flux densities are given in the following table, corresponding to different antenna temperatures T_A (determined by noise generator). | Approximate Flux Densities | | | | | | | | | |----------------------------|----------------------------|---------|-------------------------|----|-----|-----|-----|-----| | Channel | hannel A _{eff} of | | Antenna Temperature (K) | | | | | (K) | | MHz | Antenna | (m^2) | 5 | 10 | 20 | 30 | 40 | 60 | | 30- 46 | 15 | | | | 120 | 180 | 240 | 360 | | 46- 86 | 16 | | 28 | 55 | 110 | 170 | 220 | 340 | | 86- 160 | 15 | | 30 | 60 | 120 | 180 | 240 | 360 | | 160- 290 | 19 | | 24 | 50 | 100 | 140 | 190 | 290 | | 290- 540 | 13 | | 35 | 70 | 140 | 210 | 280 | 420 | | 540-1000 | 10 | | 46 | 90 | 180 | 280 | 370 | 550 | The flux densities are found by the relation $S = 0.3 \text{ T}_0/A_{eff} 10^{22} \text{W/m}^2\text{Hz}$, the fluxes corresponding to 5 T_0 are threshold values on the film, except in channel 1 where 20 $T_{\rm O}$ is the threshold value (sensitivity was reduced due to high Milky Way fluxes), saturation occurs at 60 To. used in channels 1, 2, and 3 since November 1976 (groups of log-periodic dipoles) and a result of a IC video device matching the video outputs of the radiometers to the scope, used since August 1978. Harvard Radio Astronomy Station, Fort Davis, Texas -- Summaries are presented of solar radio bursts recorded in the frequency range 25-580 MHz. The equipment used at the Station has been described by Thompson [Astrophys. J., 133, 643, 1961] and by Maxwell [Solar Physics, 16, 224, 1971]. At 100 MHz the intensity ranges listed as 1, 2, and 3 correspond approximately to 5-50, 50-500, and >500 x $10^{-22} \rm Wm^{-2} Hz^{-1}$. Culgoora Solar Observatory, Australia -- The observations at C.S.I.R.O. Solar Observatory, Culgoora, N.S.W., Australia are made by the C.S.I.R.O. Division of Radiophysics, Epping, N.S.W. Summaries are presented of solar radio bursts in the frequency range 8-8000 MHz. For a description of the equipment see K.V. Sheridan [Proc. Astron. Soc. Australia, 1, 58, 1967]. The intensity scale is qualitative. Sagamore Hill Radio Observatory -- Spectral measurements of dekameter wavelength Type II, III, IV and V radio emission are made at Sagamore Hill on a patrol basis. A special purpose radiometer sweeps the 25-75 MHz frequency range at a rate of 1 sweep per second. Two semi-bicone stationary antennas, spaced 300 meters apart on an E-W line to form the interferometer, are used with the spectral receiver. With this array, positive identification of The new flux calibration is a result of new antennas any solar event is enhanced by the resultant fringe pattern on the spectrogram. (The bicone antennas are a D. Gaunt design.) > All raw data are recorded on a Varian Statos-V x, y, z Electrostatic Recorder (Model 500) for real time readout. An improved solid state sweep frequency radiometer whose basic component is a H.P. Spectrum Analyzer provides up to 10 dB greater sensitivity than the original instrument and is now in routine operation at Sagamore Hill。 On 12 July 1970 the frequency interval of the dekameter spectral observations was changed from 19-41 MHz to 24-48 MHz. This observed frequency interval was changed to 25-75 MHz on 12 August 1975 to provide a better representation of the burst phenomena observed at these wavelengths. Sagamore Hill now uses the recommended intensity classification listed above from the 1975 Instruction Manual. The schematic diagram above illustrates a typical dynamic spectrum which might be produced by a large flare (Importance 2B and larger). Various flares produce many variations to this "typ- ical spectrum". Microwave continuum will no longer be listed here except as special comments in the Remarks column. Manila Observatory -- The Manila Observatory observes in the spectral range 24-48 MHz and coordinates its observations with the observers at Sagamore Hill. Dürnten Spectrograph, Switzerland -- The Dürnten spectrograph was constructed under support of the Swiss National Science Foundation. It is located at Dürnten near Zürich, Switzerland. The film registration now covers a frequency range from 100-1000 MHz in one continuous sweep. The sweep rate is normally set at 4 Hz. The threshold intensity I_{th} amounts to about 110±30 flux units between 140 and 200 MHz and 70±30 flux units between 200 and 1000 MHz.
Saturation occurs roughly at I=3 I_{th} . Intensities are indicated according to the following intensity levels: Intensity 1 = not saturated Intensity 2 = nearly saturated Intensity 3 = clearly saturated For more detailed description of the instrument see: Tarnstrom, G. L., Astr. Mitt. Eidgen. Sternwarte Zürich, No. 317, 1973. Dwingeloo Radio Spectrograph, Netherlands --The radiospectrograph at Dwingeloo is operated by the Netherlands Foundation for Radio Astronomy, which is financed by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). It is a 60-channel receiver measuring intensity and circular polarization. The intensity is displayed in two ways: one sensitive for fluctuations, which has a dynamical range of ± 1.7 dB, and one with a logarithmic measuring range of about 15 dB over quiet sun level (q.s.l.). Saturation occurs about 20 dB over q.s.l. The threshold sensitivity is 0.2 dB. The time resolution is 0.01 sec. The bandwidth of the channels is 0.9 MHz. The outputs are routinely recorded on 35 mm cinefilm. In addition, for particularly interesting events, they are recorded on digital magnetic tape. The receiver is regularly calibrated. Intensities of bursts are reported as estimated from the film in ranges approximately as: - 1: 1 50 flux units $(10^{-22} \text{Wm}^{-2} \text{Hz}^{-1})$ - 2: 50 500 flux units. - 3: >500 flux units. Since June 1978, the spectrograph has been tuned between 509 and 666 MHz with 10 channels between 509 and 553 MHz (spacing 2.7 MHz), 45 channels between 574 and 614 MHz (spacing 0.9 MHz) and 5 channels between 655 and 666 MHz (spacing 2.7 MHz). During 1979 the primary band will be expanded to 400-880 MHz. A number of single frequency recordings are derived from the spectrograph channels. These recordings are reported as "Distinctive Events". For detailed descriptions of the spectrograph see: [De Groot, T. and J. Van Nieuwkoop, Solar Phys., 4, 332, 1968] and [Van Nieuwkoop, J., A Multi-channel Solar Radio-Spectrograph, Thesis, Utrecht, 1971]. Culgoora Radioheliograph at 43.25, 80 or 160 MHz — The radioheliograph at the CSIRO Solar Observatory, Culgoora (Australia) is a circular array of 96 paraboloid reflector antennas equally spaced around a circle of 3 km diameter. It records 2 two-dimensional pictures of the Sun each second: one in the left-handed, the other in the right-handed sense of circular polarization [J. P. Wild, editor, Proc. IREE (Aust.), 28, 277, 1967]. Originally the heliograph operated at 80 MHz; it has been converted to time-sharing operation at 43.25, 80 and 160 MHz covering fields of view of 2° x 1.6°, 2° x 1.6° and 1° x 0.8° with half-power beamwidths at zenith of 7.4', 3.7' and 1.9', respectively [Sheridan, K. V., N. R. Labrum and W. J. Payten, Proc. IEEE, 61, 1312, 1973]. For the 43.25 MHz frequency an array of 48 corner reflector antennas set on a circle of 2.77 km diameter has been built just inside the main radioheliograph array. At this frequency only one sense of linear polarization is received. The heliograph pencil beam can track the Sun for 6 hours and 40 minutes centered on local noon. The mechanical movement of the antennas is limited to 4 hours and 48 minutes (slightly less near the summer and winter solstices) so that the Sun drifts into and out of the broad antenna beams during the first and the last hour of observation. The normal observing hours are approximately 2300 to 0500 UT. The events selected for listing in the Table may be: small, isolated events during periods of little activity: daily samples during prolonged storms; or outstanding events during active periods. Source positions are given by their central distance in units of the Sun's optical radius, R_{\odot} and their position angle; the latter is the angle of 0° to 360° measured eastward from the north point of the solar disk (i.e., from celestial north). The apparent projected positions and the polarization listed here are taken from the visual analog display of the taped, digital heliograph data; the expected relative accuracy is about 0.1 R_{\odot} in distance and 10° in PA. The polarization is described qualitatively as weak (ℓ or r) or strong (L or R) circular polarization. The intensity is given on a scale 1 to 3, with the corresponding flux densities, S, very approximately in the range: - 1: $S < 2 \times 10^{-21} \text{Wm}^{-2} \text{Hz}^{-1}$ - 2: $2 \times 10^{-21} < S < 2 \times 10^{-20} \text{Wm}^{-2} \text{Hz}^{-1}$ - 3: $S > 2 \times 10^{-20} \text{Wm}^{-2} \text{Hz}^{-1}$ Storms which are mostly of intensity 1 will not normally be listed. The positions may be affected by unknown amounts of ionospheric refraction; this effect is more pronounced the lower the frequency. If refraction errors are suspected, this will be noted in the "remarks" column of the Table. ### COSMIC RAYS (F.1) Tabulated Observations -- The table presents the daily (UT) average counting rates per hour (scaled) for eight high counting rate neutron monitors: Thule, Alert, Deep River, Calgary, Sulphur Mountain, Kiel, Climax, and Tokyo. The characteristics of the eight stations are given below; the data have been corrected applying the barometric coefficients to the listed mean station pressures. | <u>Station</u> | <u>Thule</u> | <u>Alert</u> | Deep River | <u>Calgary</u> | Sulphur Mt. | <u>Kiel</u> | <u>Climax</u> | <u>Tokyo</u> | <u>Kula</u> | |--------------------------|--------------|--------------|------------|----------------|-------------|-------------|---------------|--------------|-------------| | Geog. Lat., N. | 76°35' | 82°31' | 46°06' | 51°05' | 51°12' | 54°18' | 39°22' | 35°45' | 20°44' | | Geog. Long., E. | 291°35' | 297°40' | 282°30' | 245°52 | 244°24 | 10°06' | 253°49 | 139°43' | 203°40' | | Cutoff, GV | 0.00 | 0.00 | 1.02 | 1.09 | 1.14 | 2.28 | 3.03 | 11.61 | 13.3 | | Altitude, m | 260 | 66 | 145 | 1128 | 2283 | 54 | 3400 | 20 | 930 | | Detector type | NM 64 | NM 64 | NM 64 | NM 64 | NM .64 | NM 64 | IGY | NM 64 | NM 64 | | Scaling factor | 100 | 100 | 300 | 100 | 100 | 100 | 100* | 256 | 100 | | Baro. coeff.,
%/mm Hg | 1.00 | . 987 | .987 | 1.0155 | 1.0085 | .961 | .943 | .888 | .915 | | Mean press. mm Hg | 730 | 752 | 747 | 671 | 582 | 755 | 504 | 760.5 | 686 | ^{*} From January 1, 1966. The Climax, Colorado, U.S.A., neutron monitor data are communicated by J. A. Simpson and G. Lentz of the Enrico Fermi Institute for Nuclear Studies, University of Chicago. The instrument is a standard Chicago type neutron monitor, utilizing 12 BF3 counter tubes. The station has a mean barometric pressure of 504.0 mm Hg. For a more detailed description of the neutron intensity monitor and its associated electronics see J. A. Simpson, Annals of the IGY, Vol. IV, Part VII, 351-373, 1957. The publication on these data in this monthly series began September 1960. Earlier data, beginning January 1953, are available in hourly form at the World Data Center A for Solar-Terrestrial Physics. The Deep River, Ontario, Canada, neutron monitor, follows the IQSY design [IQSY Instruction Manual No. 7]. Publication of the daily rates in this series began in January 1966 but a chart of hourly values from Deep River, described below, has been published herein since January 1959. Until December 31, 1972 the station was operated and maintained by Atomic Energy of Canada Ltd., but on January 1, 1973 the National Research Council of Canada took over the responsibility for maintenance of the station. The data are now provided by Margaret D. Wilson of the National Research Council of Canada. The original data can be obtained from National Research Council of Canada, Ontario, Canada, KIA OR6, or from any of the World Data Centers. The 18-NM-64 neutron monitor located at Alert, North West Territories, Canada, is unique because its asymptotic cone of acceptance in space is less than 10° wide and is aligned within 7° of the spin axis of the earth. Hence, unlike the stations whose cones of acceptance rotate with the earth approximately in the plane of the ecliptic, Alert always "looks" into a fixed cone directed northward. It experiences negligible periodic diurnal intensity variation. The monitor at Alert was provided by Atomic Energy of Canada, Ltd., and housed in a building provided by National Research Council of Canada. It is the responsibility of the National Research Council; the day-to-day operation is by courtesy of the Canadian Meteorological Service. The two high counting rate neutron monitors at Sulphur Mountain and Calgary have values for magnetic cutoff rigidity comparable to the Deep River monitor. Their asymptotic cones of acceptance "look" approximately in the equatorial plane in essentially the same direction in space. The data, beginning January 1971, from Sulphur Mountain and Calgary super neutron monitors are communicated by D. Venkatesan and T. Mathews of the Department of Physics, University of Calgary, Calgary 44, Alberta, Canada. The stations have mean barometric pressures of 766 mb, and 833 mb, respectively. The barometric coefficients used to correct the data are 0.7665%/mb and 0.7718%/mb, respectively. Hourly mean data from both installations are routinely distributed to the scientific community and the World Data Center A for Solar-Terrestrial Physics, Boulder, Colorado. The data began March 1963 for Sulphur Mountain and January 1964 for Calgary, and are available at the World Data Center as stated. The stations were set up by B. G. Wilson (now at Simon Fraser University, Burnaby, British Columbia). The Thule nucleonic intensity detector, of standard IQSY design, was originally located at the Geopole Station Greenland: latitude 76°36'N, longitude 68°48'W, altitude 260m, geomagnetic threshold rigidity essentially zero. At the end of 1976, it was moved to a new site on Thule Air Base. The coordinates are essentially unchanged except that the altitude is now close to sea level. The data are communicated by Martin A. Pomerantz,
Bartol Research Foundation, Newark, DE 19711. Any changes in either the atmospheric attenuation length or in the sensitivity arising from long term drifts are applied retrospectively before the final hourly mean data are routinely distributed to the World Data Centers and to the scientific community. Three other monitors, at Kiel (18-NM-64), Tokyo (36-NM-64), and Kula (3-NM-64), have asymptotic cones of acceptance much different from those given above. Therefore, they can be used to distinguish between UT-dependent and LT-dependent time variations. Higher cutoff rigidities also aid further estimation of rigidity dependence. The publication of the Kiel and Tokyo data began with the December 1973 data. The data from both neutron monitors are routinely submitted to the World Data Centers A, B, C1 and C2 for Cosmic Rays as well as to listed researchers. Kiel data have been available since September 1964 and Tokyo (or Tokyo-Itabashi) data since January 1970. Since there were changes in the number of counters, a revision of pressure reduction, and so on, the level of Tokyo data has changed several times during 1976-77. The refined data will be published elsewhere in the near future. The data are communicated to Solar-Geophysical Data by M. Wada after receiving the Kiel data from O. Binder. The Kula 3-NM-64 neutron monitor was originally maintained from August 1966 to December 1972 by the Atomic Energy of Canada Limited. In September 1975 NOAA took over operations. Data are archived at the World Data Center A for Solar-Terrestrial Physics. Charts -- Variations of cosmic ray intensity are depicted in chart form for the above stations. The vertical scale lines mark the days of the month in Universal Time. The horizontal scale lines are in intervals of 5% deviation from an arbitrarily chosen 100% reference level for each station. The 100% reference levels are based upon (after barometric correction) 1.846x106 counts per hour for Deep River; 0.6678x106 for Alert; 0.8827x106 for Sulphur Mountain; and 1.1767x106 for Calgary. For Thule, Kiel, Climax, Tokyo, and Kula, the plots represent percentage deviation from the monthly mean intensity which is taken to be the 100% level. ### **GEOMAGNETIC ACTIVITY (D.1)** Table of Indices, Kp, Kn, Ks, Km, Cp, Ap, aa, and Selected Quiet and Disturbed Days -- The data in the table are: ten quietest days (Q), and five most disturbed days of the month (D); three-hourly indices Kp, Kn, Ks, Km; character figure, Cp; daily "equivalent amplitude", Ap; and aa indices with quiet day figures K and C. The data are made available by the International Service of Geomagnetic Indices under the auspices of the International Association of Geomagnetism and Aeronomy through Division V: Observatories, Instruments, Indices and Data. The Institute für Geophysik, Göttingen University, computes the planetary and equivalent amplitude indices and determines the "international quiet and disturbed days", Q and D. The aa-indices and Kn, Ks, Km are provided by the Institut de Physique du Globe, Paris, France. Many of the activity indices are described by J. Bartels in Annals of the IGY, 4, 227-236, London, Pergamon Press, 1957. \underline{Kp} is the mean standardized K-index from 13 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e. \overline{g} , 5- is 4 and 2/3, 50 is 5 and 0/3, and 5+ is 5 and 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the other geophysical fields. A full description of the indices <u>Kn, Ks, Km</u> is given in a monograph, <u>Indices Kn, Ks et Km</u>, <u>1964-1967</u>, edited in 1968 by the Centre National de la Recherche Scientifique, 15 quai Anatole, France, 75007 PARIS, which contains these indices for 1964-1967 while <u>IAGA Bulletin No. 39</u> contains those for 1959-1963. Yearly computations of these data are published in the series of <u>IAGA Bulletin No. 32</u>. All of them are available on magnetic tape at the appropriate World Data Center. Briefly, the three-hourly indices Kn and Ks for the Northern and Southern hemispheres respectively are derived from the K indices of observatories approximately well distributed in latitude and in longitude. The indices are standardized according to the distances of the stations to the auroral zones. The stations are arranged in groups representing a longitude sector in one of the hemispheres (5 in the Northern hemisphere, 3 in the Southern). However, from January 1, 1979, onward, 4 groups will be used in the Southern hemisphere by splitting into 2 groups the former group made up of Eyrewell, Toolangi and Gnangara. Lauder will be associated with Eyrewell, and Toolangi with Gnangara. This change reduces the small residual daily variation of the southern as-index, owing to the insufficient number of groups in the Southern Hemisphere. The observatories currently in use are: Magadan Petropavlovsk Memambetsu Sverdlovsk Tunguska Niemegk Witteveen Hartland Ottawa Fredericksburg Victoria Newport Tucson Lauder Eyrewell Toolangi Gnangara Kerguelen Hermanus Port Alfred Argentine Island South Georgia Trelew The mean standardized K of each sector is converted into an equivalent amplitude and the weighted (in longitude) averages an and as of these amplitudes are converted back into Kn and Ks. Km is derived in the same way from am, the average of an and as. Indices an, as, and am are expressed in gammas (one gamma equals one nanoTesla) and correspond to the magnetic activity level (as it can be inferred from K indices) at an invariant magnetic latitude of 50°. Indices Kn, Ks, and Km are expressed in the same units as Kp. Values published in these reports are only provisional because in some months all observatories used in each longitude sector have not sent K indices at the right time and because K indices of Antarctic stations have to be rescaled at the end of each wintering. The <u>Cp-figure</u> is a standardized version of the Ci-figure formerly published and is derived from the indices Kp by converting the daily sum of ap into the range 0.0 to 2.5. Ap is a daily index of magnetic activity on a linear scale rather than on the quasi-logarithmic scale of the K-indices. It is the average of the eight values of an intermediate 3-hourly index ap, defined as approximately one-half the average gamma range of the most disturbed of the three force components, in the three-hour interval at standard stations; in practice, ap is computed from the Kp for the 3-hour interval. The extreme range of the scale of Ap is 0 to 400. Values of Ap (like Kp and Cp) have been published for 1932 to 1961 in IAGA Bulletin No. 18 by J. Bartels. Yearly compilations of these data, as well as the selected days, are published in the series of IAGA Bulletin No. 32 (the continuation of IAGA Bulletin No. 12). These Bulletins are available from the IUGG Publications Office 39, Rue Gay Lussac, Paris (V). These indices are also available at the appropriate World Data Centers. The <u>aa indices</u> are the continuation of the series beginning in the year 1868. A full description of these indices is given in the IAGA Bulletin 33, which contains them for the years 1868-1967. Descriptions are also given (especially comparisons with am, ap, or Ci indices) in two short papers [Ann. Geoph. 27, 62-70, 1971, and J. Geophys. Res., 77, 6870-6874, 1972]. The aa values for 1968-1975 are contained in IAGA Bulletin 32. However, revised aa values for the years 1969-1976 will be soon distributed to the recipients of IAGA Bulletin 32 on the form of loose sheets to be inserted in the Bulletins 39 (1968-1975) and 32f (1976). A graph of these values through 1977 is published in the February 1977 issue of Solar-Geophysical Data, Revised aa values for 1969-76 also ap-Part II. pear there. Briefly, such three-hourly indices, computed from K indices of two antipodal observatories (invariant magnetic latitude 50°), provide a quantitative characterization of the magnetic activity, which is homogeneous through the whole series. Half-daily and daily values give an estimation of the activity level very close to that obtained with am indices. Values are in gammas and correspond to the activity level at an invariant magnetic latitude of 50°. The aa indices are computed for: - N = daily values for the Northern Hemisphere, - S = daily values for the Southern Hemisphere, - M = half-daily values of aa indices for the Greenwich day. Letters <u>C</u> and <u>K</u> refer to a classification of the quiet days of the month (C = really quiet, K = quiet but with slightly disturbed three-hourly intervals). The letters on the left refer to the 24 hour Greenwich day, on the right to a period of 48 hours centered on the Greenwich noon. The three-hourly indices aa are available from the appropriate World Data Centers on magnetic tape using the format described in *IAGA Bulletin 33*. The magnetically quiet and disturbed days (Q & D are selected in accordance with the general outline in Terr. Mag. (Predecessor to J. Geophys. Res.) 48, 219-227, 1943. The method in current use calls for ranking the days of a month by their geomagnetic activity as determined from the following three criteria with equal weight: (1) the sum of the eight Kp's; (2) the sum of the squares of the eight Kp's and (3) the greatest Kp. Beginning with the data for December 1976 numbers appear with the Qs and Ds to rank them in order from the most quiet or most disturbed, respectively. Day number 10 is given as "O". Also a selected "quiet day" considered "not really quiet" is marked by the letter A if Ap > 6 for that day, or marked by the letter K if $Ap \le 6$ but one $Kp \ge 30$ or two Kp values are $\ge 3-$. A selected "disturbed day" considered "not really disturbed" is marked by an asterisk (*) if Ap < 20. This ranking method has been used since the
responsibility for issuing these selected days was transferred from De Bilt to Göttingen in July 1976. The rankings may be obtained for the months of July - November 1976 by request to WDC-A for Solar-Terrestrial Physics. A table of Ap indices for the last 12 months is presented so that trends in magnetic activity can be easily followed. Chart of Kp by Solar Rotations -- Monthly a graph of Kp is given for several solar rotations, furnished through the courtesy of the Geophysikalisches Institut of the University of Göttingen. Annually a graph of the whole year by solar rotations is included. From time to time another 27-day rotation chart depicting the daily geomagnetic character figure, C9, is presented. C9 is obtained from Cp by reducing the Cp-values to integers between 0 and 9 according to the key given in the charts. Chart of Dst by Solar Rotations -- A plot of Dst values which has been given regularly following the table of Dst, described below, will also be presented on a Bartels Rotation basis corresponding to the Kp presentation. The purpose in making this presentation is to enable conformity with recommendations concerning scale lengths made for the years of International Magnetosphere Study (IMS). Since the vertical scale varies with each month the 100y interval is illustrated at the end of each month. Table and Graph of Provisional Hourly Equatorial Dst Index -- The equatorial Dst index at given UT represents magnetic field variations at the dipole equator on the earth's surface, averaged over local time, that are caused mainly by the magnetospheric equatorial currents including the cross-tail current. The reference level of Dst is such that Dst is statistically zero on the days internationally designated as quiet days. Provisional hourly Dst data are based on hourly values of the horizontal component from four magnetic observatories: San Juan, Honolulu, Kakioka, and Hermanus. These provisional hourly values are replaced by a more definitive annual set of the Dst index at the end of each year. The provisional hourly values are calculated and forwarded for publication by M. Sugiura, NASA-Goddard Space Flight Center, Greenbelt, Maryland 20771 and D. J. Poros, Computer Sciences Corporation, Silver Spring, Maryland. Principal Magnetic Storms -- Finally a table presents the principal magnetic storms for the month as reported by several observatories through cooperation with the International Association of Geomagnetism and Aeronomy. These are the data formerly published in the Journal of Geophysical Research. They are now, however, grouped by the storm rather than by station. The geomagnetic latitude of the station is indicated. The beginning time is given to the hour and minute in UT. The type of sudden commencement, if any, together with its magnitude in each element D, H or Z is next in the table: sc = sudden commencement; sc* = small initial impluse followed by main impulse (in this case the amplitude is that of the main pulse only, neglecting the initial brief pulse); dots in these columns represent a storm with gradual commencement; dashes indicate no data entries. Signs of amplitudes of D and Z are taken algebraically; D reckoned positive if toward the east and Z reckoned positive if vertically downward. In the next columns the day and the threehour periods on that day when the K-index reached its maximum are given followed by the K-index value. In the next three columns the maximum ranges in D, H and Z during the storm are given. The ending time is given only to the nearest hour. This is the time of cessation of reasonably marked disturbance movements in the trace. More specifically, it is the time when the K-index measure has diminished to 2 or less for a reasonable period. For each date the data are listed in north-to-south geomagnetic latitude order. The observatories reporting are listed below the table each month. The abbreviations used for the observatory names are as follows: | GEOMAGNETIC | OBSERVATORIES | |-------------|---------------| | | | | Code | Station | Geomag.
<u>Latitude</u> | |------|----------------|----------------------------| | ABG | Alibag | 9.5N | | ANN | Annamalainagar | 1.5N | | API | Apia | 16.0S | | BOU | Boulder | 48.9N | | COL | College | 64.6N | | FRD | Fredericksburg | 49.6N | | GUL | Gulmarg | 24.5N | | GNA | Gnangara | 43.2S | | GUA | Guam | 4.0N | | HER | Hermanus | 33.7S | | HON | Honolulu | 21.1N | | HUA | Huancayo | 0.6S | | HYB | Hyderabad | 7.6N | | IRK | Irkutsk | 41.0N | | JAI | Jaipur | 17.3N | | KGL | Kerguelen | 56.5S | | NEW | Newport | 55.1N | | PMG | Port Moresby | 18.6S | | SHL | Shillong | 14.7N | | SJG | San Juan | 29.9N | | SIT | Sitka | 60.0N | | TOO | Toolangi | 46.7S | | TRD | Trivandrum | 1.1S | | TUC | Tucson | 40.4N | | UJJ | Ujjain | 13.5N | | WIT | Witteveen | 54.2N | Sudden Commencements and Solar Flare Effects -- These reports are provided by A. Romaña for the International Service of Geomagnetic Indices, International Association of Geomagnetism and Aeronomy, Division V: Observatories, Instruments, Indices and Data. The sudden commencements (s.s.c.) and solar flare effects (s.f.e.) are from magnetograms of the world-wide network of magnetic observatories. The stations, together with their abbreviations, are given in IAGA Bulletin No. 20 of the International Union of Geodesy and Geophysics as well as the series IAGA Bulletin No. 32 which contain the yearly compilations of these data. Before January 1966 these reports were published periodically in Journal of Geophysical Research. From then until December 1970 they were published quarterly in Solar-Geophysical Data. Beginning with December 1970 these data are published monthly and, thus, are based on fewer reports and differ slightly in detail from the similar data published previously. The decision to publish this less complete report was made in order to make the data available more rapidly. The table gives date and UT time of event with stations by two letter abbreviations grouped by quality A, B or C. ### **RADIO PROPAGATION QUALITY INDICES (B.52, B.53)** Transmission Frequency Ranges — The North Atlantic path (Lüchow (53.0°N, 11.2°E) — Norfolk) is represented by six frequencies, 3.357, 4.975, 8.080, 10.865, 16.410, and 20.015 MHz, recorded continuously. They are shown in a series of diagrams one for each day. The heavy solid lines represent field strength \geq -12 dB above 1 μ V/m (transmitter power reduced to 1 kW). Observed field strengths between -12 dB and -40 dB above 1 μ V/m are shown by the fine line. These diagrams are based on data reported by the German Post Office through the Fernmeldetechnisches Zentralamt, Darmstadt, Federal Republic of Germany. Radio Propagation Quality Indices are calculated from the records on five circuits received at Lüchow Federal Republic of Germany, with highly directive rhombic antennas (except the short-haul paths Bracknell-Lüchow and Moscow-Lüchow which are received with non-directional vertical antennas). The quality figures are calculated for a twenty-four hour period (0600 - 0600 UT) using transmissions from Tokyo, Japan; Norfolk, USA; Moscow, USSR; Canberra, Australia; and Bracknell, England. The following frequencies are currently in use: | Tokyo | Norfolk | Moscow | |--|---|---------------------------------------| | 22.770 MHz
18.220
13.597
9.970
3.622 | 20.015 MHz
16.410
10.865
8.080
4.975
3.357 | 15.9 MHz
11.0
7.7
5.4
3.9 | | Canberra | Bracknell | | | 19.690 MHz
13.920
11.030
5.100 | 18.261 kHz
14.436
11.086
8.040
4.782
3.289 | | The index 0.0 corresponds to a median field strength of -30 dB above 1 $\mu\text{V/m}$ (converted to 1 kW and referred to an omnidirectional antenna). The figures are in steps of 5 dB (index 10.0 = +20 dB above 1 $\mu\text{V/m}$). The field strength of the frequency with the highest value for each hour is used in place of a mean of all recorded frequencies. This is done on the assumption that the optimum frequency would be used for communication. ### DATA FOR 6 MONTHS BEFORE MONTH OF PUBLICATION ### TABLE OF CONTENTS | | | Page | |--|--|----------------| | Active Region Summary (A. | 6b) | 42 | | <u>Hα Solar Flares</u> | | | | C.1ba
C.1e
C.1d
Solar Radio Wayes | Standardized Data and Individual Reports
Flare Index
Patrols | 42
44
45 | | | | | | C.3 | Outstanding Occurrences | 45 | | <u>Energetic Solar Particles</u> | and Plasma (A.12e, A.13e) | 51 | | Magnetograms of Geomagnet | ic Storms (D.1e) | 54 | ### **ACTIVE REGION SUMMARY (A.6b)** These documents are a preliminary version of the maps of filaments and active regions published biennially by the Paris Observatory. They are prepared from the daily spectroheliograms of the Meudon Observatory (H α , K_{1V} and K_3) and from filtergrams of the Haute Provence Observatory (H α). When there are gaps in these observations, they are filled by the complementary H α and K_{2-3} images from the Kodaikanal (India), Athens (Greece) and Madrid (Spain) Observatories. <u>I. Map.</u> -- On the map solar meridian and parallels appear as a rectangular grid so that a phenomenon appearing at latitude ϕ has its longitudinal size enlarged proportional to sec ϕ . Choice of the 0° meridian and numbering follows Carrington. A rotation begins at the moment when the 0° meridian coincides with the central meridian. The longitude of the central meridian of the visible hemisphere at Oh is shown for every day of the rotation by short heavy bars. Some dates are shown for convenience. The longer bars show the longitude of the central meridian at the time of the observations used. The map presents a synopsis of chromospheric filaments and of
active regions with or without sunspots. The schematic line which locates the filaments is obtained by superposition of daily observations. The solid areas inside the double lines correspond to the part of the filament which was observed on more than eight days whether successive days or not. The hatched parts were observed between 4 and 8 days and the parts left blank correspond to a visibility of less than four days. Small size filaments visible only by a single observation are not shown. Sunspots are shown by small circles with diameters proportional to their size. The adopted diameter corresponds approximately to a maximum diameter observed while the sunspot crosses the visible hemisphere of the sun, measured on the Meudon plates $K_{1\nu}$ and reduced to the scale of the maps. Facular plages are shown at the moment of the maximum development of the sunspots that they contain, or on the day when the brightness was maximum. This brightness is indicated by four kinds of hatching, the darkest corresponds to the most intense plages, the clearest to highly scattered faculae. - II. Table of Active Regions -- The columns of the table are explained as follows: - 1) Identification numbers by rotation. This identification has been used in *IAU Quarterly Bulletin* since 1959 with the lists of published flares to indicate the responsible active regions. - 2) Mean co-ordinates for each active region. - 3) Age, given in days in relation to central meridian passage. Example: A center is >6 days old when it was born before appearing at East limb. The number of days is preceded by + if it was born before passage at central meridian, by if it was born between the central meridian and the West limb. - 4) Importance on a scale of 1 to 10. The value given takes into account the persistence, the number and the size of sunspots and the size of the facular plage. Ephemeral plages or the very scattered ones are outlined on the maps but are not mentioned in the table. - 5) Indication (x) that no visible sunspots on K_{1V} Spectroheliograms have been observed in this center during the passage. - 6) Identification of the center in the preceding rotation if the active region is a return one. - 7) State of activity in the center during the passage at the West limb. ### $H\alpha$ SOLAR FLARES (C.1ba, C.1e, C.1d) From January 1968 the flare reports published six months after observation were divided into two tables labeled "confirmed" and "unconfirmed". This separation was felt desirable in 1968 to present the most homogeneous and reliable flare data for use by the scientific community. However, it has become apparent that for small events, which currently constitute the majority of reports, such discrimination is questionable. Therefore, beginning with the January 1975 data, all reported ${\rm H}\alpha$ flares are published in one chronological list. The listing is prepared in cooperation with DASOP (Department d'Astronomie Solaire et Plane- taire), Observatoire de Paris, 92190 Meudon, France. For each event there is a "group report" line more closely resembling the presentation of the flares as they will be published in the IAU Quarterly Bulletin on Solar Activity (QBSA). In Solar-Geophysical Data the flares as reported by the individual observatories follow the "group report" line. In QBSA only the summary of the observatory contributions is included. The "group report" line is intended as a summary of all individual reports. The principal criteria for grouping reports together are flare position and times. The following new rules have been adopted to determine times, areas and importances of grouped events: - -- The beginning time is the time of first observation of an event by an observatory. If there is uncertainty in the beginning time, it is indicated by a "+" sign followed by the difference in minutes between the time of the first observation and the time of the latest observed beginning. More than 9 minutes difference appears as >9. The same applies for times of maximum. When only one observatory has reported the flare the uncertainty in time cannot be determined. When two or more maxima are identified, their times are reported with the same group line. The ending time is an average time of the reported ends. - -- With near agreement among observatories an average of the areas is used in determining importance. - -- With widely varying area measurements reported by several observatories the average area is not computed. The importance is estimated from the reported importances. An importance 1 or more is assigned only when reported by several observers or when only a single observatory is operating at the time of observing such a flare. - -- When only <u>one</u> observatory has reported a flare the measured and corrected areas must be considered somewhat questionable. There is no way to confirm their accuracy and it has been noted that measurements vary considerably from one observatory to another. - -- A question mark (?) as a flare importance may result from a questionable report of importance 1 or more when one of the following conditions exists. - (1) The reported importances show too much scatter. - (2) Disagreement exists on the classification of the event. An event reported as a flare by one observer may be identified by another observer as a different type of event (e.g. Bright Surge at Limb) - (3) Only one observatory reports the event even though several are observing at that time. No confirmation of the event was obtained from queries sent to those with cinematographic patrols. These observatories are listed followed by "2" when a second look at their film was made or by "1" when there was no second evaluation. The individual flare reports serve to show the detail of the times, areas, and importances as summarized in the grouped events. The columns in the table are as follows: - -- Group Number and Reporting Observatories using IAU abbreviation (see p. 44). - -- The Universal date. - -- Beginning time in UT. (An "E" after the time means that the flare began before this time.) - Time of maximum phase in UT (more than one maxima may be listed) (A "U" after the time indicates an uncertainity in the time of maxima.) - -- Ending time in UT. (A "D" after this time means that the flare continued after this end time, but the observatory stopped observing before the flare ended.) - The heliographic coordinates in degrees for the "center of gravity" of the emission region, corresponding to the time of maximum intensity. - -- The distance from the center of disk in units of disk radius. - -- McMath serial number of the associated plage region. - -- The time of central meridian passage of the position of the flare in tenths of the Universal date. - -- Duration in minutes. - -- The flare importance on the IAU scale of Sf* to 4b. (In summary line for the group, a "?" will be used when there has been too much discrepancy among individual reports to determine accurately the probable importance of the event). - -- Observing conditions where 1 means poor, 2 fair, and 3 good. (Observatories at Ramey, Palehua, Athenes and Tehran use a scale of 1-5.) - Nature and completeness of available observations where - C = a complete, or quasi-complete sequence of photographs was obtained, - P = one or a few photographs of the event were obtained resulting in incomplete time coverage, - complete time coverage, V = all (or most of) the development of the flare was <u>visually</u> observed or, - S = flare was <u>seen</u> visually for a small part of its probable duration. - Time of measurement for tabulated areas.Apparent area (i.e., projected area at - -- Apparent area (1.e., projected area at time of maximum brightness in millionths of solar disk -- this is not necessarily the maximum area). (Prior to January 1975 this measured area in millionths was divided by 97 and was indicated as heliographic square degrees, hence the tabular heading was incorrect and should have been millionths/97.) - -- Corrected area in square degrees. - -- Remarks in the IAU system of notes where ^{*} For easier visual selection of the more important flares a minus sign, "-", is used to indicate sub-flares instead of "S". | A | = | Eruptive | prominence | whose | base | is: | less | than | | |---|---|----------|------------|-------|------|-----|------|------|--| | | | 009 Fun | | 34 | | | | | | 90° from central meridian. B = Probably the end of a more important flare. C = Invisible 10 minutes before. D = Brilliant Point. E = Two or more brilliant points. F = Several eruptive centers. G = No visible spots in the neighborhood. H = Flare accompanied by a high speed dark filament. I = Active region very extended J = Distinct variations of plage intensity before or after the flare. K = Several intensity maxima. L = Existing filaments show signs of sudden activity. M = White-light flare N = Continuous spectrum shows effects of polarization. O = Observations have been made in the calcium II lines H or K. P = Flare shows helium D_3 in emission. Q = Flare shows the Balmer continuum in emission. R = Marked asymmetry in ${\rm H}\alpha$ line suggests ejection of high velocity material. S = Brightness follows disappearance of filament (same position) T = Region active all day. U = Two bright branches, parallel (11) or converging (Y). V = Occurrence of an explosive phase: important and abrupt expansion in about a minute with or without important intensity increase. W = Great increase in area after time of maximum intensity. X = Unusually wide $H\alpha$ line. Y = System of loop-type prominences. Z = Major sunspot umbra covered by flare. Intervals when no observatory reported times of patrol observation are listed chronologically in the table. The dual importance scheme used, which was adopted January 1, 1966 by IAU Commission 10, is summarized in the following table: | "Corrected" area | Relativ | e Intensity | Evaluation | |-------------------|-------------|-------------
--------------| | in square degrees | .Faint(f) | Normal(n) | Brilliant(b) | | ≤2.0 | \$ f | Sn | Sb | | ≤2.0 | Sf | Sn | Sb | |---------------|----|----|----| | 2.1^{-} 5.1 | 1f | 1n | 1b | | 5.2 - 12.4 | 2f | 2n | 2b | | 12.5 - 24.7 | 3f | 3n | 3b | | >24.7 | 4f | 4n | 4b | The area to be used in assigning the first figure of the dual importance is the area of the flaring region at the time of maximum brightness. observatory measures apparent area in millionths of the solar disk. For flares less than 65° from the center of the solar disk, the formula relating apparent and corrected area is "corrected" area = $$\frac{\text{apparent area}}{97}$$ x sec Θ where apparent area is in millionths of the disk and corrected area is in heliographic square degrees. For flares more than 65° from the center, the "sec 0 law" becomes unsatisfactory. The first importance figure can be estimated from the table below where areas are given in millionths of the disk. | Angle | Limit S-1 | Limit 1-2 | Limit 2-3 | |---------|-----------|-----------|-----------| | 0° | 200 | 500 | 1200 | | *** *** | sec ⊖ law | sec ⊖ law | sec ⊖ law | | 65° | 90 | 280 | 600 | | 70° | 75 | 240 | 500 | | 80° | 50 | 180 | 350 | | 90° | 45 | 170 | 300 | The intensity scale shown as the second importance figure is only a qualitative one where each observatory uses its experience to decide if a flare is rather faint (f), normal (n), or rather bright (b). SOLAR FLARE OBSERVATORIES | COMPUTER | | 143 | | |----------|-------------|------------------|---| | COOL | UBS
Type | I A U
ABBRE V | NAME, PLACE AND COUNTRY | | 824 | С | ABST | ABASTUHANI, GEORGIAN SSR | | 508 | VC | ATHN | NATL OBS., ATHENS, GREECE (USAF) | | 650 | PC | 81G8 | BIG BEAR CITY, CALIFORNIA, USA | | 560 | VC | BUCA | NATL OBS. BUCHAREST ROMANIA | | 570 | VC | CATA | CATANIA.ITALY | | 402 | C | | CULGOORA, AUSTRALIA | | 478 | C | HALE . | HALEAKALA.HAUI.HAHAII.USA | | 537 | VP | HERS. | R.GREENNICH DBS., HERSTHONCEUX, ENGLAND | | 563 | Ç | HTPR | HAUTE-PROVENCE, FRANCE | | 649 | VC | HOLL | HOLLOMAN, AFB, NEW MEXICO.USA | | 718 | C | HUAN | GEOPHYSICAL INSTHUANCAYO,PERU | | 517 | ٧ | HURB | HURBANOVO,CZECHOSLOVAKIA | | 358 | ٧ | ISTA | UNIV.OBS.,ISTANBOUL,TURKEY | | 382 | γp | KAND | KANDILLI OBS.,ISTANBOUL.TURKEY | | 542 | P | KANZ | GRAZ OBS.,KANZELHOHE,AUSTRIA | | 827 | VP. | KHAR | KHARKOV.UKRANIAN SSR | | 828 | C | KIEV | KIEV,GAO,UKRANIAN SSR | | 309 | ٧ | KODA | KODAIKANAL, INDIA | | 522 | VΡ | LOÇA | LOCARNO, SHITZERLAND | | 876 | G | LADA | LVOV,UKRANIAN SSR | | 468 | VC | MANI | HANILA.PHILIPPINES | | 642 | C | HCMA | NCMATH-HULBERT, PONTIAC, HICHIGAN, USA | | 505 | C | HEUD | HEUDON, FRANCE | | 314 | C | HITK | HITAKA,TOKYO,JAPAN | | 555 | C | HONT | MONTE HARTO OBS., ROME, ITALY | | 476 | VC | PALE | PALEHUA.HAWAII.USA | | 648 | VC | RAHY | RAMEY SOLAR DESERVATORY, RAHEY AFB, PUERTO RICO | | 833 | VC | TACH | TACHKENT, UZBECK SSR | | 341 | VΡ | TEHR | TEHRAN, IRAN | | 514 | Ç | UPIC | UPICE, CZECHOSLAVAKIA | | 834 | VC | VORO | VOROSHTLOV.USSR | | 546 | VP | HEND | WENDELSTEIN, GFR | | 523 | PC | ZURI | EIOGENOSSISCHE STERNHARTE.ZURICH.SHITZERLAND | The above table gives the solar flare observatories presently cooperating in international data interchange through the World Data Centers as originally established during the International Geophysical Year. For each observatory are given the code numbers used on the punched cards at NOAA; the four letter IAU abbreviations; name, place and country; and type of patrol where C, V and P have the meanings explained above. > Note: All the flare data are recorded on punched cards. Copies of tabulations from them or magnetic tapes of the data are available at cost through the World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado Flare Index -- The daily flare index is defined as U.S.A. 80303. $$I_f = \frac{.76}{T*} \sum_{A_d}^{2}$$ where individual flare areas A_d are measured in millionths of solar disk. T* is the effective observing time in minutes. If corresponds closely to the flare index developed at the High Altitude Observatory to measure the integrated intensity of flare radiation. The flare areas are not corrected for geometric foreshortening, so the definition of I; places great weight on large flares located near the center of the sun's disk. Characteristics of the index I_f are discussed in more detail in the paper by C. Sawyer, "Daily Index of Solar Flare Activity" [(*J. Geophys. Res.*, 72, 385, 1967)]. The table lists the date, index and actual hours of observation included in the calculation and follows the table of Solar Flares. Beginning with the January 1975 data, this index is calculated using all flares. Previously it had been calculated using only those confirmed flares of greater than 1 square degree in area, as then included in the IAU Quarterly Bulletin on Solar Activity. A regional flare index is described in the text for the data for seven months before month of publication on page Patrols -- Following the tables a graph of the intervals of no flare patrol observation for all the observatories included in the total patrol is given. The graph is divided into visual and cinematographic patrols. (See page 10 for more detail.) ### **SOLAR RADIO WAVES (C.3)** Outstanding Occurrences -- Solar radio emission bursts at fixed frequencies are reported by the worldwide network of observing stations. By the sixth month following observation, it is expected that all reports have been received and the data are published in table form in Solar-Geophysical Data. From time to time selected solar bursts are illustrated. The code name used in this publication to identify the station, its alternate station names, if appropriate, the geographic coordinates, and frequencies in MHz on which the station reports a are presented in the table on page 51. In the data presentation, bursts reported from different observing stations are joined by brackets when they occur near the same time. Each set of brackets may not always include all of the solar event. The frequency in the MHz precedes the abbreviated station name. Following the name is given the type of event. The Type consists of two columns. The first column is the morphological SGD numerical code which has been used in Solar-Geophysical Data, and the second column is the letter symbol for easier recognition of type. The use of the letter symbol began with the January 1975 data. In the case of OTTA and PENT observations, letters are sometimes appended to the SGD numerical code. See page 49 for explanations. For each event start and maximum phase in UT, duration in minutes, and peak and mean flux densities in 10-22Wm-2Hz-1 are listed. The letter "E" after the starting time indicates that the event began before the time listed. A "U" after any time denotes an uncertainty in the measurement. A "D" denotes the burst lasted longer than indicated. Information on polarization, positions and other remarks are included in the final column (Note: OPR = only paper recording). Both the tables and illustrations prepared by H. Tanaka, as a part of the *Instruction Manual for Monthly Report*, and a table of definitions with a page of illustrations prepared by A. Covington are included here. It is felt that though the meanings are essentially the same, the two viewpoints may aid experimenters in interpreting how the symbols are assigned to bursts by the various observatories. Two possibly confusing items seem to remain. Covington feels those GRF bursts with obvious flat tops are a new type of burst best listed under 27(RF) rather than with the GRF symbol since it is also defined as more or less regular rise and fall of continuum with long duration. The illustration of the 10 cm wavelength "Group" with the letter code "SER" may also prove confusing as Covington feels it should rightfully be listed with the SGD number code 41 rather than 42(SER). The modifications appended to the SGD numerical code for Ottawa and Penticton observations are given here as explained by A. E. Covington, National Research Council, Canada. The letter A added to a Simple event recognizes the longest duration event superimposed upon a long duration event. The use of A enables a marginal line to be placed against the entry for the start and extended to include the superimposed events. The presence of unlisted fluctuations or variations which slightly modify the basic form are denoted by the letter F. added to the SGD numerical code for the event so modified. Records observed simultaneously at widely separated stations have led to the recognition of unique variations of small intensity such as the Rise Only event (which can sometimes be regarded as a discontinuity in the daily level), the absorption only event, the GRF of great duration, isolated events or short duration or spikes, and the single cycle of a sinusoid. Clarification of some of the profiles follows. To identify Rise Only encode as 240, and to identify the Post Rise enhanced level following the rise encode as either 24P or 25P. Typical profiles based upon the new IAU letter symbols and the modifications suggested are shown in idealized form in the Figure on page 50, identified by the ${\it SGD}$ numerical code and underlined letters. The various systems are related as indicated by the key to the figures. At Sagamore Hill an automated data correction and handling system was integrated into the patrol operation in June 1974. After being subected to an extended period of evaluation, it is currently functioning as a regular part of the patrol operation. This automated data system provides real time burst integrated flux densities, a quantity which has been found to be of great value in predicting the occurrence and magnitude of PCA phenomena. In the Descriptive Texts published before 1975 details were given concerning equipment used at Western Hemisphere Observatories. Although
these are no longer included in the text, information concerning equipment and data reduction may be obtained from the World Data Center A for Solar-Terrestrial Physics or from the observatories. Event Types According to the Instruction Manual for Monthly Report (prepared by H. Tanaka for ICSU-STP-IAU) | SGD
Code | New
Letter | r identifying types of event Morphological Classification | URANO
Code | erical SGD code and letter symbol. Remarks | |-------------|---------------|---|---------------|---| | | Symbo1 | | | | | 1 | S | Simple 1 | 1 | | | 2 | S/F | Simple 1F | 1 | S + F | | 3 | S | Simple 2 | 1 | | | 4 | S/F | Simple 2F | 1 | S + F, | | 5 | S | Simple | 1 | • | | 6 | S | Minor | 0 | Defined as simple rise and fall of minor burst with duration 1 or 2 min. | | 7 | C | Minor+ | 0 | Defined as minor burst with second part. | | 8 | S | Spike | 1 | Self-evident by duration. | | 20 | GRF | Simple 3 | 1 | | | 21 | GRF | Simple 3A | 1 | A means underlying. Clearly superposed burst i
to be listed separately, but separation is some
times difficult and arbitrary. In such cases
list as C. | | 22 | GRF | Simple 3F | | Fluctuations of short periods be listed separately. | | 23 | GRF | Simple 3AF | 1 | | | 24 | R | Rîse | 8 | | | 25 | R | Rise A | 8 | | | 26 | FAL | Fall | | | | 27 | RF | | | | | 28 | PRE | Precursor | | | | 29 | PBI | Post Burst Increase | 2 | | | 30 | PBI | Post Burst Increase A | 2 | | | 31 | ABS | Post Burst Decrease | | | | 32 | ABS | Absorption | | | | 40 | F | Fluctuations | 4 | | | 41 | F | Group of Bursts | 4 | A group of minor bursts close to each other. | | 42 | SER | Series of Bursts | 4 | A series of bursts occur intermittently from base level with considerable time intervals between bursts. | | 43 | NS | Onset of Noise Storm | 7 | To be listed with starting time, and duration with symbol D. | | 44 | NS | Noise Storm in Progress | 7 | Starting time with symbol E, and duration with symbol D. | | 45 | С | Complex | 3 | | | 46 | С | Complex F | 3 | | | 47 | GB | Great Burst | 3 | | | 48 | C | Major | 5 | Defined as complex variation of intensity with large amplitude | | 49 | GB | Major+ | 6 | Major increase of flux with duration greater than 10 min. | Explanation of letter symbols. Basically, microwave bursts can be classified into the following types: S = Simple : Mostly nonthermal 'microwave impulsive burst' or 'decimetric burst' (see p. 34). = Complex: Combination of a few or many simple bursts. F = Fluctuation : Minor C sometic = Fluctuation : Minor C sometimes superposed in the main burst. GB = Great Burst : Major C of special importance. PRE = Precursor : Preburst activity connected to the main burst. PBI = Post Burst Increase : Tail of the main burst which may be regarded as enhancement of S-component. GRF = Gradual Rise and Fall: Temporal enhancement of S-component or similar activation in the flaring region. It may sometimes start with relatively sharp rise like a simple burst. If this sharp rise can be clearly recognized as simple burst, GRF becomes PBI. Note that both have similar characteristics. ABS = Absorption: Absorption due to surgelike material mainly appears after the burst and is sometimes called postburst decrease. This phenomenon may occur frequently, but it can only be recognized when the flux comes down to preburst level. Temporal fall of flux which is sometimes called negative burst may be listed as ABS, but it may simply be the temporal fall of emission. The following three symbols are simply morphological, which may be necessary due to limited observation time, or for the simplicity of tabulation: R = Rise : This may also occur as the onset of long-enduring enhancement of S-component associated with other solar events. FAL = Fall SER = Series of Bursts On dm-m-Dm wavelength range, most of the events may be C with F, GB, and PRE as more specific descriptions. The following two symbols were prepared for this range: NS = Noise Storm RF = Rise and Fall : Defined as more or less irregular rise and fall of continuum with duration of the order of minutes to an hour. S, FAL and SER may also be used. These types are illustrated in tables beginning on the following page in which samples from different sources are compared. Polarization information is denoted by the letters R (right-handed) or L (left-handed). The degree of polarization in percent is shown in two digits. When precise values are not available, the degree of polarization is expressed in symbols, W = weak, M = moderate or S = strong. For example, 83R means 83% right-hand polarization, and SL means strong left-hand polarization. Positional information is indicated by the letters F (fan-beam) or P(pencil-beam). Position angle is shown in the first three digits, and radial distance is shown by the following three digits. For example, 135120F means -- position angle = 135°, radial distance = 120% of solar radius observed by fan beam. A Selected Bibliography with Comments Related to Evolution of Burst Profiles at 2700-2800 MHz has been compiled by A. E. Covington. A copy can be made available, on request, from the World Data Center A for Solar-Terrestrial Physics. Covington Additions to Tanaka's Proposed IAU Key | SGD
Code | New
Letter
Symbol | Morphological
Classification | Remarks | |-----------------|-------------------------|---|---| | 1A
3A
21A | S
S
GRF | Simple 1A
Simple 2A
Simple 3A GRF | Single simple burst any duration and intensity. Event separable from other superimposed bursts. | | 2A
4A | S/F
S/F | Simple 1AF Simple 2AF | Single simple burst any duration and intensity. Event separable from other superimposed bursts. Unlisted minor departures and fluctuations. | | 240 | R | Rise only | Discontinuity in daily level without observed restora- | | 240F | R | Rise only F | tion, any cause.
With unlisted fluctuations. | | 24P | R | Post Rise | Post Rise enhanced level. | | 24PF | R | Post Rise F | Post Rise enhanced level with unlisted fluctuations. | | 26A | FAL | Fall A | Fall with listed superimposed event. | | 260 | FAL | Fall Only | Fall only as discontinuity in daily level. | | 26F | FAL | Fall F | Fall with unlisted minor fluctuations. | | 27F | RF | Rise and Fall F | Rise and Fall with unlisted minor variations and fluctuations. | | 27AF | RF | Rise and Fall AF | Rise and Fall with listed superimposed events and unlisted minor variations and fluctuations. | | 31A | ABS | P.B. Decrease A | Post Burst Decrease with listed superimposed event. | | 32A | ABS | Absorption A | Absorption with listed superimposed emissive event. | | 46F | C | Complex F | Complex event with fluctuations. | # 2800-2700 MHz SOLAR BURST PROFILES | CODE | STATION | ALTERNATE | GEOGI | RAPHIC | FREQUENCIES | |--------------------------------------|--|---|---------------------------------|-----------------------------------|---| | NAME | | NAME | LAT | LONG | REPORTED (MHz) | | ABST | Abastumani | | 42N | 43E | 221 | | ARCE | Arcetri | | 44N | 11E | 9240, 2830, 1420 | | ATHN | Athens | | 38N | 24E | 8800, 4995, 2695, 1415 | | BERN | Berne Uecht/Bumishus | | 47N | 07E | 8400, 10400, 36000, 92500 | | BORD
BOUL
CRIM
DWIN
GORK | Bordeaux
Boulder
Simferopol
Dwingeloo
Gorky | Floriac
Crimea
Zimenki | 44N
40N
44N
53N
56N | 01W
105W
34E
06E
44E | 930
4995, 2695, 1420
3100
250, 160
9100, 2950, 950, 650, 200, 100 | | HARS
HIRA
HUAN
IRKU
IZMI | Harestua
Hiraiso
Huancayo
Irkutsk
Moscow IZMIRAN | Blindern
Siberian IZMIR
Krasnaja Pakhra | 60N
36N
12S
52N
55N | 10E
140E
75W
104E
37E | 228
500, 200, 100
9400
9650
207 | | KIEL | Kiel | | 54N | 10E | 1420, 1030, 800, 602, 405, 240 | | KIEV | Kiev | | 50N | 30E | 550, 188 | | KISV | Kislovodsk | | 43N | 42E | 15000, 6100 | | MANI | Manila | | 14N | 121E | 8800, 4995, 2695, 1415, 606 | | MCMA | McMath-Hulbert | | 42N | 83W | 18 | | NAGO | Nagoya | | 35N | 137E | 35000 | | ONDR | Ondrejov | Algonquin | 49N | 14E | 808, 536, 260 | | OTTA | Ottawa ARO | | 45N | 78W | 2800 | | PALE | Palehua | | 21N | 158W | 8800, 1415 | | PENT | Penticton | | 49N | 119W | 2695 | | POTS
SAOP
SGMR | Potsdam
Sao Paulo
Sagamore Hill | Tremsdorf | 52N
22S
42N | 13E
46W
71W | 510, 234, 113, 1470, 3000, 9500
7000
35000, 15400, 8800, 4995,
2695, 1415, 606, 410, 245 | | SLOU | Slough | | 51N | 00E | 71000, 37000, 19000, 9400, 2800 | | Sydn | Sydney | | 34S | 151E | 1420, 720 | | TORN | Torun | Ussurisk | 53N | 19E | 127 | | TRST | Trieste | | 46N | 14E | 408, 237 | | TYKW | Toyokawa | | 34N | 137E | 9400, 3750, 2000, 1000 | | UPIC | Upice | | 50N | 16E | 29, 33 | | VORO | Voroshilov | | 43N | 132E | 2930, 207 | ## **ENERGETIC SOLAR PARTICLES AND PLASMA (A.12e, A.13e)** A series of data plots are presented using data obtained on the NASA spacecraft IMP 7 and IMP 8. The purpose of the plots is to convey on as near continuous a basis as possible the state of the interplanetary particle environment. The plots consist of hourly averaged solar wind plasma parameters and representative fluxes of energetic electrons, protons, and alpha particles. Plasma plots are generated at MIT. Energetic particle flux plots are generated at the National Space Science Data Center (Code 601, Goddard Space Flight Center, Greenbelt, Maryland 20772) from
machine sensible hourly averaged fluxes given in (cm² sr s MeV/n)⁻¹ provided by several experimental groups. Updated composite magnetic tapes are available at NSSDC, as are 35 mm microfilm flux plots with standard International Magnetosphere Study scalings. IMP 7 (Explorer 47, IMP H) was launched into a near-circular geocentric, ~ 12 day, orbit at 30-40 $R_{\rm E}$ on September 23, 1972. IMP 8 (Explorer 50, IMP J) was launched on October 26, 1973 into a similar orbit. The two spacecraft were instrumented to measure the plasmas, fields, and energetic particle fluxes found in the interplanetary medium and in the distant magnetosheath and mag- netotail. The relative orbital phase of the two spacecraft evolved such that the percent of each 12-day period during which at least one spacecraft was in the interplanetary medium was 100% until mid-1975, decreased to a minimum of about 65% near January 1976, and returned to 100% in late 1976. Due to the relatively large number of flux plots, multiple traces are graphed on individual frames. Accordingly, the statistical error bar associated with each data point is omitted in order to maximize cleanliness of plot. To compensate for this, only data points with statistical uncertainties of about 20% or less are plotted. As this corresponds to 25 counts $(1/\sqrt{25} = 20\%)$, averages of hourly fluxes are taken over a sufficient number of hours to assure that the longer term averaged flux corresponds to at least 25 incident particles. In this process it is assumed that during each hour for which a flux is given, the instrument was counting for a full 60 minutes. This assumption is rarely significantly in error, and, after the first two months of data submission, only data for hours during which at least 30 minutes of counting occurred were provided to NSSDC. Such >1-hour - averaged fluxes are plotted as a series of apparent hourly fluxes of the common value. The reader is cautioned against interpreting such a series of apparently constant flux values as representing a physically real timeindependence in the flux level. In order to preserve particle event onsettime information low flux averages are terminated whenever the flux for a single hour exceeds that associated with 50 counts. Data gaps in the data are distinguished by the lack of connecting lines between data points. The purpose of the IMP data plots is to convey on as near continuous a basis as possible the state of the interplanetary particle environment. As such, IMP 7 and IMP 8 data have been interspersed for the Caltech and JHU/APL modes. Such an interspersal is not feasible for the U. of Maryland mode due to a disparity in energy windows, and is not required for the U. of Chicago and GSFC modes due to the negligible magnetotail modulation of the high rigidity particles involved in these modes. Plasma plots contain data only for hours during which the appropriate spacecraft was beyond the earth's bow shock. These interplanetary identifications are made by a visual inspection of preliminary data plots at MIT. On the two lowest energy proton plots, fluxes obtained in the magnetotail during hours when no interplanetary values are available, are distinguishable. For only the 0.16 - 0.22 MeV protons is there a significant probability that the fluxes so plotted will be significantly different than the interplanetary fluxes. Predicted times of model bow shock crossings are used for these energetic proton plots. Plasma Data -- Hourly averaged plasma parameters (bulk speed, proton number density, most probable thermal speed), determined from the MIT plasma experiments on IMPs 7 and 8, are provided by H. Bridge, A. Lazarus and J. Sullivan of the Massachusetts Institute of Technology. The instrument is a split-collector, modulated-grid Faraday cup designed to measure the positive ion component of the solar wind. Particle fluxes in 24 contiguous energy channels and in 14 angular sectors are measured every 15 seconds (IMP 7) or 30 seconds (IMP 8). The hourly averages are based on preliminary plasma parameters computed by fitting the observations to a convected, isotropic Maxwellian distribution function. The error bars on each plotted data point indicate the standard deviation of the data contributing to the hourly average. Note that the thermal speed plot has scales for both thermal speed (left side) and temperature (right side). Energetic Particle Data -- The sources and some characteristics of the energetic particle data are summarized in Table 1. The geometric factors are in some cases average values over the indicated energy ranges. Neglect of energy dependence in geometric factors leads to an error whose magnitude depends on sensor geometry and ambient particle spectrum. Thus for the highest energy proton mode which uses a non-curved, relatively thick sensor, a flux \sim 5% too high is found for an E-4 spectrum. Typically, smaller errors are made for other modes. TABLE 1 | SPECIES | ENERGY
(Mev/n) | GEOMETRIC FACTOR
(cm² ster) | MULTI-PARAMETER
ANALYSIS? | SOURCE | |-----------|-------------------|--------------------------------|------------------------------|------------| | Electrons | 1-5 | 0.07 to 1.6
(see text) | yes | Caltech. | | Protons | 0.16-0.22 | 0.03 | no | U. of Md. | | Protons | 0.97-1.85 | 1.51 | no | JHU/APL | | Protons | 4.0-12.5 | 0.07 or 0.23
(see text) | yes | Caltech. | | Protons | 13.7-25.2 | 0.32 | yes | JHU/APL | | Protons | 19.8-40.1 | 3.13 | yes | GSFC | | Protons | 40.1-81.8 | 2.68 | yes | GSFC | | Alphas | 11-20 | 2.05 | yes | U. Chicago | | Alphas | 20-25 | 2.05 | λē2 | U. Chicago | | Alphas | 25-90 | 2.05 | yes | U. Chicago | The "Multi-Parameter Analysis?" column indicates whether multi-parameter analysis (typically dE/dx vs. E) is used in flux determination. Such analysis permits unambiguous identification of particle species [see, for example, discussion in Garcia-Munoz et al., Astrophys. J., 184, 967, 1973] but is generally not feasible for particles which have insufficient energy to penetrate one sensor and reach a second sensor. As discussed below, however, an attempt has been made to remove the non-proton component from the 0.97 - 1.85 MeV proton fluxes. Fluxes in units of $(cm^2 \text{ sr s})^{-1}$ have been obtained by folding together count rates, geometric factors, and, where approrpiate, pulse height analysis data. These fluxes are then divided by the width of the energy window to yield the differential fluxes plotted. The ratio of these average differential fluxes, to the "true" differential flux at the midpoint of the energy range E_1 to E_2 , is indicated in Table 2 for E^{-n} spectra and for $R = E_2/E_1$. Alternatively, one can ask at what energy within the E_1 to E_2 interval is the true differential flux equal to the average differential flux. The ratio of this energy $[(n-1)](E_2-E_1)/(E_1^{1-n}-E_2^{1-n})]$ to the midpoint energy $[k_2](E_1+E_2)]$ is given in Table 3. It is clear from these tables that great care must be used when obtaining spectral parameters from fluxes resulting from wide energy windows at times of steep spectra. # TABLE 2 RATIO OF <u>AVERAGE</u> TO <u>TRUE DIFFERENTIAL</u> # FLUX AT MIDPOINT OF ENERGY INTERVAL | n R | 1.3 | 1.6 | 2 | 3 | |-----|--------|--------|--------|--------| | 0.5 | 1.0021 | 1.0068 | 1.0146 | 1.0353 | | 2 | 1.0173 | 1.0563 | 1.1250 | 1.3333 | | 5 | 1.0893 | 1.3110 | 1.7798 | 3.9506 | TABLE 3 RATIO OF ENERGY AT WHICH TRUE FLUX = | ` | AVERAGE | FLUX TO MIDE | OINT ENERGY | _ | |---------------|-------------------------|-------------------------|-------------------------|-------------------------| | n R | 1.3 | 1.6 | 2 | 3 | | 0.5
2
5 | .9957
.9914
.9830 | .9865
.9730
.9473 | .9714
.9428
.8912 | .9330
.8660
.7598 | The 1-5 MeV electron data and 4.0-12.5 MeV proton data are obtained from telescopes consisting of eleven fully depleted silicon detectors surrounded by a plastic scintillator anti-coincidence cup. These data are provided by E. C. Stone, R. E. Vogt, R. A. Mewaldt, and co-workers at the California Institute of Technology. During most times, the electron fluxes result from a "wide geometry" mode (effective geometric factor = 1.6 cm² sr for IMP 7, 1.5 cm² sr for IMP 8), although for times of large solar particle fluxes, a "narrow geometry" mode is used (effective geometric factor = 0.07 cm² sr for IMP 7, 0.23 cm² sr for IMP 8). Electron fluxes have been corrected for secondary electrons produced by the interaction of gamma rays in the detector stack. (This background flux is separately monitored by the instrument.) Periods during which magnetospheric electrons seriously contaminate the observed 1-5 MeV electron fluxes have been identified and eliminated by analysis of 0.2-1.0 MeV electron fluxes and by a comparison of the IMP 7 and IMP 8 counting rates. Plotted proton fluxes result from a mode having geometric factors of 0.07 cm² sr on IMP 7 and 0.23 cm² sr on IMP 8. Illustrations and further descriptions of the instruments can be found in Hurford *et al.* [Ap, J, 192, 541, 1974], and in Mewaldt *et al.* [Ap, J, 205, 931, 1976]. The 0.16-0.22 MeV proton fluxes are provided from a University of Maryland experiment flown on IMP 8. They are obtained from an electrostatic analyzer in which incident particles are deflected by an applied electric field by an amount dependent on their energy/charge ratio. The deflected particles are then counted by a series of surface-barrier detectors positioned to measure particles having experienced various amounts of deflection. The flux as plotted results from the counting rate of one of these sensors and consists of: (1) 0.16-0.22 MeV ambient protons, ambient Helium and heavier ions which generally do not exceed 10% of the proton component, (3) a background flux level of 090 particles per cm² sr s MeV caused by interactions of galactic cosmic rays in the spacecraft, and (4) during times of intense fluxes of high energy
particles, a complicated time- variable background. This last component may be particularly important in the onset phase of solar flare particle events. For further details on the instrument, see Tums et al. [IEEE Trans. Nuc. Sci., NS-21, 1, 210, 1974]. The University of Maryland data are provided by G. Gloeckler, C. Y. Fan (University of Arizona), D. Hovestadt (Max-Planck Institute), F. Ipavich and co-workers. The 0.97-1.85 MeV and 13.7-25.2 MeV proton fluxes are provided from an experiment of the Johns Hopkins University/Applied Physics Laboratory. They are obtained from a telescope consisting of three colinear sensors (two surface-barrier totally depleted detectors followed by a lithiumdrifted detector) surrounded by a plastic scintillator anti-coincidence cup. The 0.97-1.85 MeV proton fluxes correspond to particles stopping in the first sensor; hence standard dE/dx - E analysis is not possible. However, ratios of proton to alpha particle fluxes and alpha particle to medium nuclei fluxes measured at slightly higher energies have been used to estimate the magnitude of, and to eliminate, the non-proton component of this 0.97-1.85 MeV proton mode. In the 13.7-25.2 MeV channels, background effects are significant for ambient fluxes below $10^{-3}~(\text{cm}^2~\text{sr s MeV})^-$ As such, only fluxes above this amplitude are plotted. These data are provided by S. M. Krimigis and T. P. Armstrong (University of Kansas). Further details on the instrument and on data analysis techniques may be found in Sarris $et\ al.$ ["Observations of Magnetospheric Bursts of High Energy Protons and Electrons at ∿35 RE with IMP 7", J. Geophys. Res. 81, 2341, 1976]. The 19.8 - 40.1 MeV and 40.1 - 81.8 MeV proton fluxes are obtained from a telescope consisting of two CsI (Na) scintillators viewed by phototubes and surrounded by an active anti-coincidence detector. These fluxes are obtained on IMP 8 only and are provided by F. B. McDonald and T. T. von Rosenvinge of NASA, Goddard Space Flight Center. The dE/dx element is 1 mm x 5 cm diameter whereas the E element is 2.01 cm x 5 cm diameter. The finite thickness of the E element yields a geometric factor which decreases nearly linearly with increasing energy, being 3.25 cm² sr at 19.8 MeV and 2.35 cm² sr at 81.8 MeV. In computing fluxes, the average geometric factors in each of the two energy intervals is used. No correction is made for the resultant error which ranges from zero for a flat spectrum to 5% (computed flux too high) for an E-* spectrum. Corrections for slow gain shifts in the scintillator/phototube output are made. The three alpha particle fluxes are provided by J. A. Simpson and G. M. Mason of the University of Chicago. They are obtained from a telescope consisting of three lithium-drifted silicon detectors, a CsI (TL) scintillator viewed by four photodiodes and a sapphire scintillator/Cerenkov radiator, all surrounded by a plastic anti-coincidence scintillator. The three fluxes correspond to alpha particles stopping in the second, third, and fourth sensors of the telescope. Background contamination of these fluxes is less than 10%. Care should be taken when proton and electron fluxes above 0.5 MeV are $\geq 3x10^3$ particles/cm² sr s, since these high rates may interfere with the proper operation of the instrument logic and analysis. The quoted fluxes include He³ and He⁴. During quiet periods, He³ may contribute up to 10% of the total 25-90 MeV/n flux, and considerably less for the two lower energy fluxes. The instrument is further described in Garcia-Munoz et al. [Astrophys. J. Lett., 201, 145, 1975]. ### **MAGNETOGRAMS OF GEOMAGNETIC STORMS (D.1e)** In the past the Kp and other indices have provided some information on geomagnetic disturbances. However, during the last few years there has been an increasing demand for more quantitative indices with finer time resolution and based upon records from a more suitable distribution of observatories. The indices Kn, Ks, and Km have been developed and continue to satisfy the requirement for 3-hourly indices of activity as observed at mid-latitude locations. Both the Dst and AE indices have been devised to fulfill the need for quantitative indices having finer time resolution. Dst provides an estimate of the field of the ring current although ignoring its asymmetry. AE provides an estimate of the field of the auroral electrojets. Recent progress in magnetospheric physics has made it clear that a comprehensive study of the asymmetric growth of the ring current belt is essential in understanding the mechanism of its formation and generating mechanism of magnetospheric storms as well. For this purpose, Dst is not necessarily the most suitable index. Auroral electrojets have a lifetime of order 1 to 3 hours and the increasing availability of 2.5-min AE(11)* provides indices having excellent time resolution for the study of these high-latitude magnetic variations. However, the delay inherent in acquisition and processing of all magnetograms used in deriving AE(11) and the desirability of including a record of magnetic variations at mid-latitude and equatorial locations suggest that no combination of indices is completely self-sufficient. For these reasons, actual records of magnetic variations at a number of observatories are still very useful. In this publication, one or two interesting geomagnetic events may be chosen for each month and are illustrated by reconstructed H-component magnetograms. The magnetograms are reduced from the original records to display the same amplitude scale and time base. Such common scale magnetograms are included from about 10 of the 16 observatories listed in the table on page 55, although delays in receipt of some magnetograms may necessitate using records from substitute stations. If an adequate coverage of auroral zone observatories is available, preliminary AU and AL graphs are also prepared for each event. No reduced magnetograms are prepared for months having activity of only minimal interest. These common scale magnetograms and index raphs are now produced under the direction of J. H. Allen and W. Paulishak of the National Geophysical and Solar-Terrestrial Data Center from magnetograms furnished by the World Data Center A for Solar-Terrestrial Physics. For the interval January 1967 through September 1973, the common scale magnetograms were provided by Dr. S. -I. Akasofu. ^{*}The AE indices have been published as UAG reports. A list is given on the following page. ### Table of Observatories 3 | | Geog.
Lat. | Coord.
Long. | Geomag.
Lat. | Coord.
Long. | |---|---|--|---|---| | Narssarssuaq Leirvogur Fort Churchill Barrow Great Whale River Cape Chelyuskin Abisko College Dixon Island Tixie Bay Tashkent San Juan Kakioka Honolulu Davao Tangerang | 61.20
64.18
58.80
71.30
55.27
77.72
68.36
64.87
73.55
71.58
41.33
18.12
36.23
21.32
07.08 | 314.60E
338.30
265.90
203.25
282.22
104.28
18.82
212.17
80.57
129.00
69.62
293.85
140.18
202.00
125.58
106.63 | 71.14
70.12
68.74
68.64
66.57
66.28
65.94
64.73
63.01
60.48
32.30
29.57
26.09
21.17
-4.00 | 37.42E
71.51
323.46
241.55
348.05
176.70
115.28
256.99
161.84
191.72
144.43
3.63
106.38
266.99
194.97
175.93 | | 3 3 | -00.17 | 100.00 | -11.05 | 110.00 | - UAG-37 "Auroral Electrojet Magnetic Activity Indices AE(10) for 1966", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, December 1974, 142 pages, price 75 cents. - UAG-33 "Auroral Electrojet Magnetic Activity Indices AE(10) for 1967", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, May 1974, 142 pages, price 75 cents. - UAG-29 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1968", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, October 1973, 148 pages, price 75 cents. - UAG-31 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1969", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, February 1974, 142 pages, price 75 cents. - UAG-22 "Auroral Electrojet Magnetic Activity Indices (AE) for 1970", by Joe Haskell Allen, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, November 1972, 146 pages, price 75 cents. - UAG-39 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1971", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, February 1975, 144 pages, price \$2.05. - UAG-45 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1972", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, May 1975, 144 pages, price \$2.10. - UAG-47 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1973", by Joe Haskell
Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, June 1975, 144 pages, price \$2.10. - UAG-59 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1974", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, December 1976, 144 pages, price \$2.16. - UAG-60 "Geomagnetic Data for January 1976 (AE(7) Indices and Stacked Magnetograms)" by J. H. Allen, C. A. Abston and L. R. Morris, NGSDC/EDS/NOAA, July 1977, 57 pages, price \$1.07. - UAG-62 "Geomagnetic Data for February 1976 (AE(7) Indices and Stacked Magnetograms)" by J. H. Allen, C. A. Abston and L. R. Morris, NGSDC/EDS/NOAA, September 1977, 55 pages, price \$1.11. - UAG-63 "Geomagnetic Data for March 1976 (AE(7) Indices and Stacked Magnetograms)" by J. H. Allen, C. A. Abston and L. R. Morris, NGSDC/EDS/NOAA, September 1977, 57 pages, price \$1.11. - UAG-64 "Geomagnetic Data for April 1976 (AE(8) Indices and Stacked Magnetograms)" by J. H. Allen, C. A. Abston and L. R. Morris, NGSDC/EDS/NOAA, February 1978. # DATA FOR SEVEN MONTHS BEFORE MONTH OF PUBLICATION TABLE OF CONTENTS | | | <u>Page</u> | |------|-----------------------------|-------------| | H.62 | Abbreviated Calendar Record | 57 | | C.1f | Flare Index by Region | 58 | ### **ABBREVIATED CALENDAR RECORD (H.62)** The Abbreviated Calendar Record is a monthly summary chronological account of solar and geophysical activity and events published in the seventh month after observation. It is intended to give a background for the early interpretation of solar-geophysical results. It continues the series published in *IQSY NOTES* beginning with data for January 1964 in No. 7, through data for December 1966 in No. 21, and for January 1967 through November 1968 in STP NOTES No. 1-3, 5, and 7. A Condensed Calendar Record has continued in STP NOTES. Data for December 1968 through March 1975 are published in Nos. 7-14.) It is similar to the Calendar Record compiled for the IGY and IGC-1959 [Annals of the IGY, Vol. 16] and compiled for 1960-1965 [Annals of the IQSY, Vol.2]. It is prepared from data reports available at the World Data Center A for Solar-Terrestrial Physics. However, it is compiled rapidly, including some provisional data, and should not be relied on for details of solar and geophysical events in preference to standard publications. ### The format is as follows: The period covered on each date is 0000 to 2400 UT (Universal Time). At the beginning of each month a chart of the sun for the month locates the calcium plages, as reported by the McMath-Hulbert Observatory, at the latitude and longitude of their Central Meridian passage by the last two digits of the plage serial number. The general activity of the region is approximately evaluated, mainly from area and intensity of plage and associated sunspots, by use of the symbols: G = great activity, M = moderate activity and S = small activity. This chart is superimposed on the most recent revision of the H α synoptic chart for the same month which was originally published at the beginning of the second section of Part I (Prompt Reports). See page 23. For each date a series of time lines are presented. In the first block the duration of flares of importance ≥ 1f is shown by a horizontal line, followed by the importance with a slant line separating the last two digits of the serial number of the calcium plage region in which the flare occur-red. These are selected from the grouped flare reports as published in these Solar-Geophysical Data reports. Fixed frequency solar noise bursts are indicated by vertical tick marks by wavelength range at the time of beginning of the burst. The ranges are defined as dekameter = <40 MHz, meter = 40-400 MHz, decimeter = 400-1500 MHz, and centimeter = >1500 MHz. Spectral events of types II and IV are shown at the time of beginning by the appropriate Roman numeral. Noise storms at meter wavelength are indicated by horizontal lines. On the next two lines are vertical tick marks at the time of beginning to show sudden ionospheric disturbances and solar x-ray bursts from SMS/GOES (.5-4A; 1-8A). The Ap for the day is given in the left-hand portion of the next two lines which give the eight Kp centered in the appropriate three-hour time blocks, and the time of storm sudden commencements, if any, by a triangle. The daily planetary Ap index is derived from the 3-hourly Kp indices, which are based on reports from a selected standard group of geomagnetic observatories. The Ap index increases with increasing magnetic activity to a maximum of 400. The data are provided by the International Service of Geomagnetic Indices (Göttingen) of IAGA [Annals of the IGY, Vol. 4, pp. 227-236]. Beside the Ap value appears, when appropriate, D1 to D5 or Q1 to Q10 for disturbed or quiet days respectively. The numbers indicate order from most disturbed or quietest. See page 38 for interpretation of attached letters or symbol (A, K, *). Adjacent to the sc triangle the exact time of the sc is given with the number of observatories reporting it in the parentheses. Auroral displays are usually mentioned only if the southern limit reached φ (geomagnetic latitude) less than 60°. The φ given is that of overhead occurrence in the USSR. The time and type of auroral follows this. N. V. Pushkov provides descriptions of aurora summarizing reports from a network of about 130 stations between 30° and 140° E longitude. After December 1975 the Western Europe sector data are no longer available. The following Codes to describe the aurora, as defined by F. Jacka and J. Paton in the *IQSY* Instruction Manual No. 3 Aurora, are used: - Auroral Forms: A (arc); B (band); P (patch); V (veil); R (rays); G (glow); N (not identifiable). - 2. Structure: H (homogeneous); S (striated); R (rayed); 1 short rays; 2 medium length rays; 3 long rays. - Qualifying Symbols: m (multiple); f (fragmentary); c (coronal). - 4. Condition: q (quiet); a (active); p (pulsing); p₂ (flaming); p₃ (flickering); p₃ (streaming) - p. (streaming). Brightness: 1. weak, comparable with the Milky Way. - comparable with moonlit cirrus clouds. - comparable with moonlit cumulus clouds. - much brighter than 3; if extensive, aurora may cast discernible shadows. On the next line is given the Forbush cosmic ray decreases from the Deep River or Sulphur Mountain charts limited to those of 3% or greater. Outstanding green corona as published in Solar-Geophysical Data Part I are mentioned by limb quadrant on date the peak would be at CMP. The indices on the next line are as follows: - -- The provisional daily Zürich relative sunspot number, R_Z , as communicated by Prof. M. Waldmeier of the Swiss Federal Observatory. It is based on observations at Zürich, Arosa and Locarno only. Final values of R_Z , issued after the end of each calendar year, usually differ slightly from the provisional ones. If available at time of publication these final values are used. - -- The $10~\rm cm$ solar radio flux at 2800 MHz is observed at the Algonquin Radio Observatory by the National Research Council, Canada, at about 1700 UT daily. It is expressed in units of $10^{-22} \rm Wm^{-2} Hz^{-1}$. The observed flux should be used for most solar-terrestrial studies. The values adjusted for the varying Sun-Earth distance are published elsewhere in Solar-Geophysical Data. - -- The <u>flare index</u> gives the daily flare index with the hours of flare patrol on which the index was based (see p. 44 of this text). - -- The daily Ca plage index is given next (see p. 29 of this text). - -- The ionospheric indices, I_p and I_a , are computed by the method of Y. Hakura, Y. Takenoshita, and K. Matsuoka in "Influence of Solar Activity on the Ionosphere Blackout Index", $[J.\ Radio\ Res.\ Labs.,\ Japan,\ 14$, No. 73, 1967]. If "-" is entered, it signifies less than 12 hours of data, so no value has been computed. The index I_p is for polar cap blackout, and the index I_a is for auroral zone blackout. The indices are on a scale from "0" representing 0.4 hours or less of blackout per day increasing to "9" representing 20.1 to 24 hours of blackout per day. Ionospheric f-min data from selected stations are used. The indices differ from Hakura et al. in that Kiruna and Fort Churchill data have been substituted for Point Barrow for $I_{\rm a}$, and only Resolute Bay data are usually available for $I_{\rm p}$. Next are given the McMath calcium plage region numbers on their date of CMP together with their latitude and number of rotations, if more than one, in the parentheses. The Mt. Wilson sunspot region numbers, together with their latitude, magnetic classification by $\alpha,\;\beta,\;\gamma$ or δ and largest spot (preceding "p" or following "f") and a digit encoding field strength are listed under the calcium plage region in which they appeared. The digits used to encode field strength are as follows: | Ţ | į = | 100 | _ | 500 | gauss | 6 | = | 2600 | - | 3000 | gauss | |---|-----|------|---|------|-------|----|---|------|-----|------|-------| | 2 | 2 = | 600 | _ | 1000 | | 7 | = | 3100 | - | 3500 | | | 3 | 3 = | 1100 | _ | 1500 | | 8 | = | 3600 | - | 4000 | | | 4 | ‡ = | 1600 | | 2000 | | 9 | = | 4100 | - | 4500 | | | Ę | 5 = | 2100 | | 2500 | | 10 | = | >45 | 500 |) | | If the Mt. Wilson sunspot is at CMP on a different date than the center of the calcium plage was, this date is given in parentheses following the sunspot information. If the calcium or sunspot region numbers are in parentheses, this signifies the regions were never actually at the Central Meridian; these had either died while on the Eastern Hemisphere or were born on the Western Hemisphere. When necessary, written remarks may appear at the end of the day. $\label{eq:constraint}$ ### FLARE INDEX BY REGION (C.1f) An index that characterized the flare productivity of McMath
calcium plage regions integrated over a disk passage has been developed by Constance Sawyer and Catherine Candelaria. The scale is consistent with the HAO flare index, and with the NOAA whole-disk index which is briefly described on page 44. The same formula, $$I_f = \frac{.76}{T^*} \sum_{A_d}^{A_d^2}$$ is used where A_d is the <u>measured</u> (apparent) area in millionths of solar disk, but the sum is taken for each region separately over all the days of its disk passage. The total number of flares is also given and the dates on which the first and last flares were observed in the region. The "flare-index mean" is the flare-index sum divided by the interval in days from the first flare to the last flare. ### **DATA FOR MISCELLANEOUS TIME PERIODS** # **RETROSPECTIVE WORLD INTERVALS (H.63)** Retrospective World Intervals selected by the Monitoring of Sun Earth Environment (MONSEE) program of the ICSU Special Committee on Solar- Terrestrial Physics will be presented as appropriate. ### **OTHER DATA** Information available either annually or on a non-routine publication basis will be given. The descriptive material necessary to understand the data will be included in the issue presenting the data. Data received too late for publication in the normal section may also appear here. ### PARTIAL LIST OF CONTRIBUTORS These monthly reports would not be possible without the continuing support and cooperation of scientists throughout the world. Much of the data included have been obtained through either the International Ursigram and World Days Service program or the international exchange of geophysical observations between World Data Centers in accordance with the principles set forth in recommenda- tions of relevant organizations of the International Council of Scientific Unions. (See *Guide to International Data Exchange*, issued in 1973 by the ICSU Panel on World Data Centres). Special thanks are due to many individuals, including the following: | <u>Name</u> | <u>Organization</u> | <u>Data Type</u> | |--|---|--| | C. H. Hossfield | American Association of Variable
Star Observers
Solar Division
540 N. Central Avenue
Ramsey, NJ 07446 USA | Sunspots | | P. S. McIntosh | Space Environment Laboratory '
NOAA
Boulder, CO 80303 USA | Sunspots, $H\alpha$ photographs, $H\alpha$ synoptic charts | | M. J. Martres | Section de Physique
Observatoire de Paris
92190 Meudon, France | Active regions | | M. Waldmeier | Eidgen. Sternwarte
Schmelzbergstrasse 25
8006 Zürich, Switzerland | Sunspots | | Helen W. Dodson
Orren Mohler | McMath-Hulbert Observatory
University of Michigan
895 Lake Angeles Rd. North
Pontiac, MI 48055 USA | Calcium plages, flares, SID | | | Osservatorio Astrofisico
Citta Universitaria
Viale A. Doria
95123 Catania, Italy | Flares | | R. Howard
J. M. Adkins | Mount Wilson Observatory
813 Santa Barbara Street
Pasadena, CA 91101 USA | Magnetic classifications of sunspots, solar magnetograms | | J. W. Harvey
W. Livingstone
F. Receley | Kitt Peak National Observatory
P. O. Box 26732
Tucson, AZ 85726 USA | Solar magnetograms
Helium 10830 A synoptic chart | | R. C. Altrock | Sacramento Peak Observatory
Sunspot, NM 88349 USA | Corona | | A. A. Giesecke
M. Ishitsuka | Observatorio de Huancayo
Instituto Geofisico del Peru
Apartado 46
Huancayo, Peru | SID, solar radio emission flares | | V. Badillo
F. J. Heyden | Manila Observatory
P. O. Box 1231
Manila, Philippines | Flares, SID, solar radio emission, sunspots | | M. Bernot
P. Simon | Observatoire de Meudon
92190 Meudon, France | Flares | | A. Magun
H. Wiehl
W. Schöchlin | Institute of Applied Physics
Division of Solar Observations
Sidlerstrasse 5
CH-3012 Berne, Switzerland | Solar radio emission, solar radio maps, flares | | Name | Organization | Data Type | |--|--|-----------------------| | H. Tanaka
S. Enome | Toyokawa Observatory
The Research Institute of Atmospherics
Nagoya University
Toyokawa, 442 Japan | Solar radio emission | | W. Barron | Air Force Geophysics Laboratory
L. G. Hanscom Field Code PHP
Bedford, MA 01730 USA | Solar radio emission | | W. N. Christiansen
Arthur Watkinson | School of Electrical Engineering
University of Sydney
Sydney, N.S.W. 2006, Australia | Solar radio emission | | M. B. Bell | Astrophysics Branch
National Research Council
Ottawa, Ontario, Canada KIA OR6 | Solar radio emission | | A. Maxwell | Harvard Radio Astronomy Station
Fort Davis, TX 79734 USA | Solar radio emission | | H. Urbarz | Aussenstelle Astronomie Institut
der Universitaet Tübingen
7981 Weissenau
Federal Republic of Germany | Solar radio emission | | A. O. Benz
M. R. Perrenoud | Microwave Laboratory
Gloriastrasse 35
CH-8006 Zürich, Switzerland | Solar radio emission | | C. Slottje | Solar Radio Observatory
Netherlands Foundation for
Radio Astronomy
Dwingeloo, Netherlands 7514 | Solar radio emission | | M. Pick | Observatoire de Meudon
92190 Meudon, France | Solar radio emission | | J. P. Wild | CSIRO Division of Radio Physics
Culgoora Solar Observatory
P. O. Box 76 Epping
N.S.W. 2121 Australia | Solar radio emission | | H. Zirin
A. P. Patterson | Big Bear Solar Observatory
California Institute of Technology
North Shore Drive
Big Bear City, CA 92314 USA | Coronal holes, flares | | B. J. Rickett | University of California, San Diego
Dept. of Applied Physics
and Information Science
La Jolla, CA 92037 USA | Solar wind | | J. H. Wolfe | NASA
Mail Code 245-11
Electrodynamics Branch
Ames Research Center
Moffett Field, CA 94035 USA | Solar wind | | J. Sullivan | Massachusetts Institute of Technology
Center for Space Research
Cambridge, MA 02139 USA | Solar wind | | D. S. Colburn
(C. P. Sonett) | NASA/ARC
Moffett Field, California 94035 | IP Electric Field | | F. L. Scarf | Space Science Department
TRW Systems
One Space Park
Bldg. R-5, Rm 1280
Redondo Beach, California 90278 | IP Electric Field | | Name | Organization | Data Type | |-------------------------------------|---|--| | N. F. Ness | Laboratory for Extraterrestrial Physics
NASA/GSFC, Code 690
Greenbelt, Maryland 20771 | IP Magnetic Field | | F. Mariani | Instituto Fisica Universita
Piazza Annunziata
67100 L'Aquila, Italy | IP Magnetic Field | | R. Post | NSSDC
NASA/GSFC
Code 601
Greenbelt, MD 20771 USA | Solar particles, plasmas | | W. R. Webber
J. A. Lezniak | Physics Department
University of New Hampshire
Demerritt Hall
Durham, New Hampshire 03824 | Solar cosmic ray protons | | A. Frosolone | Space Weather Consultants . P.O. Box 213 Moffett Field, CA 94035 USA | Pioneer Venus spacecraft | | G. Heckman | Space Environment Services Center
NOAA
Boulder, CO 80303 USA | Solar proton events
Inferred IP Magnetic Fields | | S. Mansurov | IZMIRAN
P.O. Akademogorodok
Moscow Region, 142092, USSR | Inferred IP Magnetic Fields | | J. M. Wilcox
P. H. Scherrer | Institute for Plasma Research
Stanford University
Via Crespi, Stanford, CA 94305 USA | Solar Mean Magnetic Fields | | R. B. Ammons (AAVSO) | P.O. Box 1441
Missoula, MT 59801 USA | SES, SWF | | C. Hornback | Table Mountain Geophysical
Monitoring Station
Space Environment Laboratory
NOAA
Boulder, CO 80303 USA | SID,
Solar radio emission | | S. Barnes | Ionospheric Sounding Station
P.O. Box 578
Puunene, Maui, HI 96784 USA | SPA | | P. C. Yuen
Kazutoshi Najita | Department of Electrical Engineering
University of Hawaii
Honolulu, HI 96822 USA | SFD | | R. F. Donnelly | Space Environment Laboratory
NOAA
Boulder, CO 80303 USA | Solar x-rays | | M. Bercovitch
Margaret D. Wilson | National Research Council of Canada
Herzberg Institute of Astrophysics
Ottawa, Ontario, Canada K1A OR6 | Cosmic rays | | D. Venkatesan
M. Tjoei | Department of Physics
University of Calgary
Calgary, Alberta, Canada T2N, 1N4 | Cosmic rays | | J. A. Simpson
G. Lentz | LASR Enrico Fermi Institute
University of Chicago
933 E. 56th Street
Chicago, IL 60637 USA | Cosmic rays
Solar cosmic ray protons | | <u>Name</u> | <u>Organization</u> | Data Type | |-----------------|--|-----------------------| | M. A. Pomerantz | Bartol Research Foundation
The Franklin Institute
University of Delaware
Newark, DE 19711 USA | Cosmic rays | | M. Wada | Institute of Physical and Chemical
Research
7-13 Kaga-1, Itabashi
Tokyo, Japan 173 | Cosmic rays | | 0. Binder | Institut für Reine und Angewandte
Kernphysik
Olshausenstr. 40/60, Gebäude N20a
23 Kiel, German Federal Republic | Cosmic rays | | M. Siebert | Institut für Geophysik
Herzberger Landstrasse 180
34 Göttingen, G.F.R. | Magnetic indices | | D. Van Sabben | Kon. Nederlands Meteorlogisch
Instituut
DeBilt, The Netherlands | Magnetic indices | | M. Sugiura | Magnetic and Electric Fields Branch
NASA/GSFC, Code 625
Greenbelt, MD 20771 USA | Magnetic indices | | D. J. Poros | Computer Sciences Corporation
Silver Spring, MD 20910 USA | Magnetic indices | | M. Menvielle | Institut de Physique du Globe
4, Place Jussieu - Tour 14
75230 Paris, France | Magnetic indices | | A. Romaña | Observatorio del Ebro
Roqueta
(Tarragona)
Spain | ssc, sfe | | W. Paulishak | NGSDC/EDIS/NOAA
Boulder, CO 80303 USA | Magnetograms | | T. Damboldt | Forschungsinstitut der Deutschen
Bundespost
61 Darmstadt, Postfach 800
German Federal Republic | Radio quality figures | ### DETAILED DATA COVERAGE FOR SOLAR-GEOPHYSICAL DATA An index to Solar-Geophysical Data beginning with the data for the year 1957 can be found on pages 65-82. The serial number of the report in which data for a given year and month were publisted is listed in the index according to type of data. The types are keyed according to ICSU recommendations; and this key, expanded for the data published in Solar-Geophysical Data, precedes the index. Listed with the kinds of data received are the periods during which they were available for publication. Beginning with 1969, when $Solar-Geophysical\ Data$ was divided into Part I and Part II, the index gives pages on which the data appear in addition to the serial number. A "B" appears between the serial number and the page number when the data were published in Part II. ### STONYHURST DISKS Two transparencies provide Stonyhurst disks in days from CMP in the size of most of the maps or drawings presented in the second section of these monthly reports. A second set of transparencies with meridian calibrated in degrees from CMP are included to fit the Mount Wilson and Kitt Peak magnetograms. The two sizes as calibrated in degrees or days from CMP are reversed from those published in the last Explanatory Text which may also be used with these maps. The dates shown were for 1969 but are within 1 day of appropriate date for 1979. See any Ephemeris. # KEY TO DETAILED DATA COVERAGE FOR SOLAR-GEOPHYSICAL DATA | n for A | a and Internal and the Control | | | |------------------|--|---|-----------------------------------| | M. 301a1 | r and Interplanetary Phenomena | | Mo/Yr Mo/Yr | | A.1 | Sunspot Drawings | | 1/67 - present | | A.la | Sunspot Data (see A.5a) | | 7/57 - present | | A.2a
A.2b | Zürich Provisional Relative Su | inspot numbers, R _Z | 7/57 - present | | A. 20
A. 2c | Zürich Final Sunspot numbers,
American Relative Sunspot numb | R _Z | 7/57 - present | | A. 2d | | | 7/57 - present
7/57 - present | | A.2e | 27-day Plot of Relative Sunspo
Sunspot Cycle (Smoothed number | 's) Graphs - in each issue | 7/57 - present | | A.2f | lable of Observed and Predicte | ed Smoothed Sunspot numbers | 10/64 - present | | A.3a
A.3b | Mt. Wilson Magnetograms | -11.01 | 9/66 - present | | A. 3c | Mt. Wilson Sunspot Magnetic Fi
Kitt Peak Magnetograms | eld Classifications | 1/62 - present | | A.3d | Mean Solar Magnetic Field (Sta | nford) | 7/74 - present
1/77 - present | | A.3e | Stanford Magnetograms | • | 1/79 - present | | A.4
A.5 | Hα Filtergrams | h / 0-1 | 1/67 - present | | A.5a | Calcium Plage Drawings - McMat
Calcium Plage (McMath) and Sun | n (Or Catania) : | 1/67 - present | | A.5b | Daily Calcium Plage Index | spot regions , | 7/57 - present
12/70 - present | | A.6 | Hα Synoptic Charts | | 6/73 - present | | A.6b | Synoptic Chart and Active Regi | ons | 4/76 - present | | A.6c
A.7a | Stanford Solar Magnetic Field
Coronal Line Emission Indices | Synoptic Charts | 1/79 - present | | A.7b | Coronal Line Emission Indices | (Provisional)
(Final) | 7/57 - 5/66 | | A.7c | White-Light Corona (NRL OSO-7, | 1971-083A) | 1/60 - present
2/72 - 6/74 | | A.7e | Solar XUV Coronagrams (NRL OSO | -7, 1971-083A) | 10/72 - 12/73 | | A.7f
A.7h | Helium D3 Coronal Holes (Big B | ear) | 1/76 - present | | A.8aa | 2800 MHz (ARO-Ottawa) Daily Ob | c Peak or Wendelstein)
served Values of Solar Flux | 1/77 - present | | A.8ab | 2800 MHz (Ottawa) Final - Daily | y Observed Values of Solar Flux | 7/57 - present | | A.8ac | Z8UU MHZ (AKU-Uttawa) Daily Va | lues Solar Flux Adjusted to 1 A H | 1/62 - 12/66
1/64 - present | | A.8ad | 2800 MHZ (Uttawa) Final - Dail | y Values of Solar Flux Adjusted | 1701 present | | A. 8b | to A.U.
470 MHz (Boulder) Daily 3-hour | ly Ayonagos | 1/64 - 12/66 | | A. 8c | 167 MHz (Boulder) Daily 3-hour | ly Averages | 7/57 - 3/58 | | A.8d | 200 MHz (Cornell) Daily 3-hour | lv Averages | 7/57 - 12/58
7/57 - 12/58 | | A.8e | 9530 MHz (USNRL) Daily Averages | 5 | 2/58 - 4/59 | | A.8f
A.8g | 3200 MHz (USNRL) Daily Averages | 606 410 045 MH (450) } | 2/58 - 4/59 | | rii og | Flux Adjusted to 1 A.U. | 606, 410, 245 MHz (AFGL) Solar | 1/67 | | | (15400 MHz began 6/69, 245 MHz | z began 10/69, 410 MHz began 9/71) | 1/67 - present | | A. 9a | 9.1 cm (Stanford) Radio Maps of | f the Sun | 4/60 - 8/73 | | A.9aa
A.9b | 9.1 cm Spectroheliogram tabulat | ed_Data (Stanford) | 1/69 - 8/73 | | A.9c | 21 cm (Fleurs) Radio Maps of th
8.6 mm (Prospect Hill) Radio Ma | ie Sun | 12/64 - 12/73 | | A.9cb | 8.6 mm (NOSC) Radio Maps of the | Sun | 4/70 - 2/74 | | A. 9d | 2 cm (NUSC) Radio Maps of the S | Sun . | 11/74 - 9/78
6/74 - 9/78 | | A.10a | 169 MHz (Nançay) Interferometri | c Observations | 7/57 - present | | A.10b
A.10c | 408 MHz (Nançay) Interferometri
21 cm (Fleurs) East-West Solar | c Observations | 11/65 - 8/71 | | A. 10d | 43 cm (Fleurs) East-West Solar | Scans | 10/65 - present | | A.10e | 10.7 cm (Ottawa-ARO) East-West | Solar Scans | 4/66 - present
6/68 - present | | A.10f | 3 cm (Toyokawa) East-West Solar | | 1/78 - present | | A.11aa | Solar X-ray Background Levels (| NRL) satellites, see below | 1/64 - present | | A.11ab
A.11ac | Solar X-ray Background Levels (| NRL Graphs) " " " | 3/65 - present | | A. 11ad | Solar X-ray Background Levels (
Solar X-ray Background Levels (| Boulder) " " " " " " " " " " " " " " " " " " " | 12/65 - 11/68 | | A.11ae | Solar X-ray Background Levels (| Aberdeen, S. D.) " " | 4/66 - 5/66
1/66 - 11/68 | | | | Designation | 2,00 11,00 | | | SOLRAD 7A 1964 | | 1/64 - 10/64 | | | SOLRAD 7B 1965 | 5–16D | 3/65 - 12/65 | | | | i-93A | | | | (Explorer 30)
0G0-4 1967 | °-73A | 1/66 - 12/67 | | | | -100A | 1/68 - 3/68 | | | | | | # A. <u>Solar and Interplanetary Phenomena</u> (continued) | 00,4. | | | |------------------|---|-----------------------------------| | | Popular Name Satellite Designation | | | | SOLRAD 9 1968-17A | 3/68 - 7/72 | | | (Explorer 37) | 6/73 - 4/74 | | | (Beginning 12/68 daily/hourly averages presented) SOLRAD-10 1971-58A | 8/72 - 6/73 | | | (Explorer 44) | • | | | SOLRAD-11 1976-023D | 1/78 - present | | A. 11b | Solar X-ray Background Levels, 0-20Å | 6/61 - 12/61 | | 71. 110 | Injun 1/SOLRAD-3, 1961-02 | | | A.11c | Solar X-ray Background Levels (Vela 1,2; 1963-39A,C) (| 10/63) | | A.11d | Solar X-ray Background Levels (McMath) | 3/67 - 8/67 | | A.11e | (0S0-3; 1967-20A), 8-12A
Solar X-ray (0S0-5; 1969-6A) Spectroheliograms | 7/69 - 11/72 | | A. IIC | (University College London, Leicester Univ.) | 7/74 - 6/75 | | A.11f | Solar X-ray (GSFC OSO-7, 1971-083A) Spectroheliograms | 12/72 - 7/74 | | A.11g | Solar X-ray Background Levels (SMS-1/GOES, 1974-033A; | 1/74 - 12/78 | | A. 11h | SMS-2/GOES, 1975-011A)
Solar X-ray (OSO-8, 1975-057A) 2-14 keV (Lockheed) | 8/75 - 9/78 | | A.11i | Solar X-ray (OSO-8, 1975-O57A) (Columbia Univeristy) | | | A.11ja | Solar EUV Spectroheliograms FeXV A (GSFC OSO-7, 1971-083A) | 5/72 - 3/74 | | A.11jb | FeXV - 284Å Spectroheliograms | 2/76 - 12/76 | | A.12aa
A.12ab | Solar Protons, Daily-hourly Values, JPL/GSFC (satellites, see below Solar Protons, Graphs, JPL/GSFC " " " |) 5/67 - 5/73
5/67 - 5/73 | | | | | | | Popular Name Satellite Designation Explorer 34 1967-51A, Ep >10, >30, >60 Mev | 5/67 - 5/69 | | | Explorer 41 1969-53A, Ep >10, >30, >60 Mev | 6/69 - 12/72
11/71 - 5/73 | | | Explorer 43 1971-19A, Ep >10, >30, >60 Mev | 11//1 - 5//3 | | A.12ba | Cosmic Ray Protons, Ep 0.6-13, 13-175, >175 Mev, Univ. of Chicago | 2/60 procent | | A.12bb | (Pioneer 6; 1965-105A and Pioneer 7; 1966-75A) Cosmic Ray Protons, Ep >13.9, >64 or >40 Mev, Univ.of New Hampshire | 3/69 - present
12/69 - present | | A.12c | (Pioneer 8; 1967-123A and Pioneer 9; 1968-100A) Cosmic Ray Protons, Ep 5-21, 21-70 Mev, Aerospace | 12/03 - present | | A. 12d | (ATS-1; 1966-110A) Low Energy Protons (NOAA satellites 1972-082A, 1973-086A, | 1/70 - 8/72
7/74 - 11/74 | | | 1974-089A) Energetic Solar Particles (IMP H, 1972-073A and IMP J, 1973-078A) | 8/75 - present | | A.12e | Energetic Solar Particles (IMP H, 1972-073% and IN 0, 1973-0706) | 9/77 - present | | A.12f
A.13a | Energetic Solar Particles (GMS/SEM, 1977-065A) Solar Wind (Pioneer 6, 1965-105A; and Pioneer 7, 1966-75A) | 3 /// | | | NASA Ames | 12/65 - present | | A.13ab | Solar Wind (Pioneer 8, 1967-123A; Pioneer 9, 1968-100A) NASA Ames | 4/72 - present | | A.13b | Solar Wind, M.I.T. | 3/69 - 2/70 | | | Pioneer 6, 1965-105A | 12/73 - present | | | Pioneer 7, 1966-75A | 6/69 - 12/69 | | A.13c | Solar Wind (Vela 3, 1964-40A; Vela 5, 1965-58A) | 1/69 - 6/72 | | A.13d | Solar Wind from IPS Measurements (UCSD)
Solar Plasma Data (IMP H, 1972-073A and IMP J, 1973-078A) | 1/75 - present
8/75 - present | | A.13e
A.17 | Interplanetary Magnetic Field | 0,70 present | | /1.2/ | Pioneer 8, 1967-123A | 10/72 - present | | | Pioneer 9, 1968-100A | 4/72 - present | | A.17c | Inferred Interplanetary Magnetic Field | 12/71 - present | | A.18 | Interplanetary Electric Field
Pioneer 8, 1967-123A | 5/72 - present | | | Pioneer 9, 1968-100A | 4/72 - present | | | Land Data Have Description Dhamana | | | | heric (and Radio Wave Propagation) Phenomena
Radar Meteor Indices, perpetual, based upon 1958-1962 | | | B. 10 | data for N45 latitude see issues 246, 251 | -, | | B.51aa | NARWS Quality Figures and Forecasts (NBS/ESSA) | 7/57 - 12/65 | | B.51ab | NARWS Comparison Graphs (NBS/ESSA) |
7/57 - 12/65
7/57 - 12/65 | | 8.51ba | NPRWS Quality Figures and Forecasts (NBS) NPRWS Comparison Graphs (NBS) | 7/57 - 10/64 | | B.51bb
B.51ca | High Latitude Quality Figures and Forecasts (ESSA/OT) | 11/64 - 9/76 | | B.51cb | High Latitude Comparison Graphs (ESSA/UL) | 11/64 - 11/73 | | B.52 | North Atlantic Graphs of Useful Frequency Ranges (German PII) | 7/57 - present
1/70 - present | | B.53 | Quality Figures Based Upon Frequency Ranges (German PTT) | 2,10 prosens | | | 66 | | | C. Flar | e-Associated Events | • | |---------------|---|-----------------------------------| | C.la
C.lba | H- α Solar Flares (Preliminary)
H- α Solar Flares (including Standardized Data) | 7/57 - present | | C.1c | (DIVided into Confirmed and Unconfirmed Flares from 1/69 12/74) | 9/66 - present | | C. 1d | H-α Subflares (included in C.1a and C.1b after $1/62$) H-α Flare Patrol (The most recent issue listed for a month | 7/57 - present | | C.le | contains the comprehensive flare patrol) | 7/57 - present | | C.1f | H-α Flare Index (Daily)
H-α Flare Index (by Region) | 9/69 - present | | C.1g | Frequency of Occurrence of Confirmed Solar Flares | 9/70 - present
1/68 - 6/68 | | C.3a
C.3aa | 2800 MHz (Ottawa) Outstanding Occurrences
2800 MHz (Ottawa) Hours of Observation | 7/57 - present | | C.3b | 4/0 MHz (Boulder) Outstanding Occurrences | 7/57 - 12/65
7/57 - 3/58 | | C.3c
C.3ca | 167 MHz (Boulder) Outstanding Occurrences
167 MHz (Boulder) Hours of Observation | 7/57 - 10/60 | | C.3d | 200 MHz (Cornell) Outstanding Occurrences | 1/59 - 12/59
7/57 - 12/58 | | C.3e
C.3f | 9530 MHz (USNRL) Outstanding Occurrences
3200 MHz (USNRL) Outstanding Occurrences | 2/58 - 4/59 | | C.3g | 200 MHz (Hawali) Outstanding Occurrences | 2/58 - 4/59
6/59 - 8/59 | | C.3h
C.3ha | 108 MHz (Boulder) Outstanding Occurrences 108 MHz (Boulder) Hours of Observation | 1/60 - 6/66 | | C.3i | 221 MHz (Boeing-Seattle) Outstanding Occurrences (Intentone | 1/60 - 12/65 | | | metric) - Changed to 223 MHz in May 1963 | 4/62 - 7/63 | | C.3j
C.3k | 107 MHz (Haleakala) Outstanding Occurrences | 5/65 - 11/65
6/65 - 3/66 | | | 10700, 2700, 960 MHz (Pennsylvania State Univ.) Outstanding Occurrences | | | C.31
C.3m | 486 MHz (Washington State Univ.) Outstanding Occurrences | 7/64 - 5/75
7/66 - 4/69 | | | 18 MHz Bursts (Boulder) (reported with C.6 1/63 - 11/66, C.6ab prior to 1/63) | | | C.3n | 35000, 15400, 8800, 4995, 2695, 1415, 606, 410, 245 MHz (AECRI | 11/67 - present
1/66 - present | | | Sagamore Hill) Outstanding Occurrences (15400 MHz began 11/67, 35000 and 245 MHz began early 1969, 410 MHz began 1971) | · | | C.3p
C.3q | 184 MHz (Boulder) Outstanding Occurrences 7000 MHz (Sao Paulo) Outstanding Occurrences | 3/67 - 7/72 | | C.3r | 408 MHZ (San Miguel) Outstanding Occurrences | 11/67 - present
10/67 - 4/72 | | C.3s
C.3t | 18 MHz (McMath-Hulbert) Bursts
43.25, 80 and 160 MHz (Culgoora) Selected Bursts | 1/68 - present | | | Note: Beginning with the data for April 1966 in CDD ED 261 | 12/72 - present | | | the c.s entries on Solar Radio Unitstanding Occurrences for the | | | | western hemisphere observatories and frequencies were combined into a single table "Solar Radio Emission Outstanding Occur- | | | | rences, c.s. beginning with June 1969 data the table was ov | | | | panded to worldwide coverage, and the various observatories are no longer indexed separately. | | | C.4aa | Solar Radio Spectrograms of Events (Fort Davis) | | | | 100 - 580 MHz
25 - 580 MHz | 7/57 - 12/58 | | | 50 - 320 MHz | 1/59 - 12/62
1/63 - 3/65 | | | 25 - 320 MHz
10 - 580 MHz | 4/65 - 12/66 | | | 10 - 1000 MHz | 1/67 - 2/70
3/70 - 4/70 | | | 10 - 2000 MHz
10 - 4000 MHz | 5/70 - 5/73 | | | 25 - 320 MHz | 5/73 - 3/74
4/74 - 12/77 | | C.4ab | 25 - 580 MHz
2100-3900 MHz Solar Radio Spectrograms of Events (Fort Davis) | 1/78 - present
1/60 - 12/61 | | C.4b | Solar Radio Spectrograms of Events (Boulder) 7.6 - 41 MHz | | | 0.4 | 7.6 - 80 MHz | 3/61 - 8/68
9/68 - 6/76 | | C.4c
C.4d | 450-1000 MHz Solar Radio Spectrograms of Events (Owens Valley)
Solar Radio Spectrograms of Events (Culgoora) | 11/60 - 10/61 | | | 10 - 210 MHz | 1/67 - 7/69 | | | 8 - 2000 MHz
8 - 4000 MHz | 8/69 - 2/70 | | C.4e | 8 - 8000 MHz | 3/70 - 10/70
11/70 - present | | C.4f | 30-1000 MHz Solar Radio Spectrograms of Events (Weissenau, GFR)
Solar Radio Spectrograms of Events (AFCRL - Sagamore Hill) | 3/68 - present | | | 19 - 41 MHz
24 - 48 MHz | 1/68 - 7/70 | | | 24 - 46 MHZ
25 - 75 MHZ | 7/70 - 7/75
8/75 - present | | | 67 | o, io - pi caciit | | C. Flare | -Associated Events (continued) | • | |----------------|---|-------------------------------------| | C.4g | 20-60 MHz Solar Radio Spectrograms of Events (Clark Lake) | 4/70 - 9/70 | | C.4h | 160-320 MHz Solar Radio Spectrograms of Events (Dwingeloo) | 1/74 - present
1/74 - present | | C.4i | 100-1000 MHz Solar Radio Spectrograms of Events (Dürnten)
24-48 MHz Solar Radio Spectrogram of Events (Manila) | 4/74 - present | | C.4j
C.5a | Solar X-ray Events (Vela 1,2; 1963-39A,C) | (10/63) | | C.5b | Solar X-ray Events (Univ. of Iowa) | | | | Explorer 33; 1966-58A (2-12A) | 7/66 - 10/71 | | | Explorer 35; 1967-70A (2-12Å) | 12/67 - 7/72
1/64 - 10/64 | | C.5c | Solar X-ray Events (NRL Tabulation) (See A.11ab for NRL Graphs and list of Satellites) and | d 3/65 - present | | C.5d | Solar X-ray Events (McMath-Hulbert) OSO-3; 1967-20A (8-12Å) | 3/67 - 8/67 | | C.5e | Solar X-ray Events (SMS-1/GOES, 1974-033A; SMS-2/GOES, 1975-011A) | 11/74 - 12/78 | | C.5f | Solar X-ray Events (OSO-8, 1975-057A) (Columbia University) | 1/63 - present | | C.6 | Sudden Ionospheric Disturbances (SID) Sudden Ionospheric Disturbances (SWF) (included with C.6 after 12/ | 62)7/57 - present | | C.6aa
C.6ab | Sudden Tonospheric Disturbances (SCNA, SEA, bursts) " | 1/58 - present | | C.6ac | Sudden Ionospheric Disturbances (SPA) " | · 6/61 - present | | C.7 | Solar Proton Events - Direct Measurement - same as A.12 | 5/67 - present | | C.8 | Solar Proton Events - Riometer | 1/67 - 6/67 | | C 05. | Confirmed Polar Cap Absorption Events (ESSA) Solar Protons, 26 MHz Riometer Events (South Pole) Provisional | 9/63 - 11/67 | | C.8ba
C.8bc | Solar Protons. 30 MHz Riometer Events (Frobisher Bay) | 1/65 - 5/65 | | C.8be | Solar Protons, 30 MHz Riometer Events (Great Whale River) | 6/65 - 2/67 | | | | | | D. Geom | magnetic and Magnetospheric Phenomena | | | | | 7/57 - present | | D. 1a | Geomagnetic Indices Ci, Ks, Kn, Km, Cp, Kp, Ap, aa, Selected Days (aa first published 1/74; Ks, Kn, Km first published 12/75; | 1/3/ - present | | | Ci discontinued 8/75) | | | D.1b | 27-day Chart of Kp for Year | 7/57 - present | | D.1ba | 27-day Chart of Kp Indices | 7/57 - present | | D.1c | 27-day Chart of C9 for Year | 7/57 - present
7/66 - present | | D.1d
D.1e | Principal Magnetic Storms
Reduced Magnetograms | 1/67 - present | | D. 16 | Sudden Commencements and Solar Flare Effects | 1/66 - present | | D.1g | Equatorial Indices Dst | 5/73 - present | | D.1h | Geomagnetic Substorm Log (Boulder) | 3/78 - present | | F C | mia Dava | | | r. <u>cosi</u> | mic Rays | | | F.1a | Cosmic Ray Daily Averages Neutron Monitors (Deep River - | 1.150 | | | graph of hourly values, daily averages begin 11/65) | 1/59 - present
9/60 - 3/72 | | F.1b | Cosmic Ray Daily Averages Neutron Monitors (Climax) Daily Averages and Graph of hourly values | 12/74 - present | | F.1c | Cosmic Ray Daily Averages Neutron Monitors (Dallas) | 1/64 - 3/74 | | F.1d | Cosmic Ray Daily Averages Neutron Monitors (Churchill) | 5/64 - 6/72 | | F.le | Cosmic Ray Daily Averages Neutron Monitors (Alert) | 3/74 - present
7/66 - present | | E 10 | Graph of hourly values (Alert)
Cosmic Ray Daily Averages Neutron Monitors (Calgary - | 7700 - present | | F.1f | also graph of hourly values) | 1/71 - present | | F.1g | Cosmic Ray Daily Averages Neutron Monitors (Sulphur Mountain - | | | _ | also graph of hourly values) | 1/71 - present | | F.1h | Cosmic Ray Daily Averages Neutron Monitors (Thule - | 4/73 - present | | F.1i | also graph of hourly values)
Cosmic Ray Daily Averages Neutron Monitors (Tokyo - | 4770 present | | [· 1] | also graph of hourly values) | 12/73 - present | | F.1j | Cosmic Ray Daily Averages Neutron Monitors (Kiel - | 10/70 process | | | also graph of hourly values) | 12/73 - present | | F.1k | Cosmic Ray Daily Averages Neutron Monitors (Kula -
also graph of hourly values) | 5/77 - present | | | also diahii of nodith saides! | -4 | | | | | | H. Mis | scellaneous | | | H.60 | Alert and Special World Interval Decisions (IUWDS Geophysical | | | | Alerts) | 7/57 - present | | H. 61 | International Geophysical Calendar | 1/62 - 12/62
12/68 - present | | H.62 | | 1/66 - 12/67 | | н.63 | Ned ospective notice and the same | • | INDEX TO "SOLAR-GEOPHYSICAL DATA" | | 195 | 7 | | | | | 1958 | 8 | | | | | | • | | | | | |--------------|------------|-------------------|-------------|-------------------|------------|------------|------------|-------------------|------------|------------|------------|-------------|-------------|------------|------------|------------|------------|------------| | Key * | Jul | Aug | Sep | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | | Λ 25 | 156 | 157 | 150 | 150 | 1.00 | | | | | · | | | | 7149 | ОСР | 000 | 1107 | DEC | | A.2a
A.2b | 156
166 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | A.2c | 157 | 166
158 | 166 | 166 | 166 | 166 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 |
175 | | A.5a | 156 | | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | A.7 | 156 | <u>157</u>
157 | 158
158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | Λ., | 130 | 107 | 165 | 159
165 | 160 | 161 | 162 | 163 | 164 | 166 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | | | | 100 | 100 | 165 | 165 | 165 | 171 | 171 | 171 | 171 | 171 | 171 | | | | | | | A.8aa | 156 | 157 | 158 | 159 | 160 | 161 | 171 | 100 | 101 | 1.05 | | | | | | | | | | A.8b | 156 | 157 | 158 | 159 | 161 | 162 | 162
163 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | A.8c | 156 | 157 | 158 | 159 | 162 | 162 | 163 | 164
164 | 165
165 | 167 | 1.00 | 1.00 | 170 | 170 | | | | | | A.8d | 156 | 157 | 158 | 159 | 160 | 161 | 163 | 163 | 164 | 165 | 168 | 169 | 170 | 172 | 173 | 174 | 175 | 176 | | A.8e | | , | 200 | | ±00 | 101 | 103 | 176 | 175 | 174 | 167
172 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | A.8f | <u> </u> | | | | | | | 176 | 175 | 174 | 172 | 170
170 | 170 | 170 | 170 | 171 | 172 | 173 | | A.10a | 171 | 171 | 171 | 171 | 171 | 171 | 171 | 171 | 171 | 171 | 172 | 170 | 170
171 | 170
171 | 170 | 171 | 172 | 173 | | B.51aa | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166. | 167 | 168 | 169 | 170 | 171 | 171 | 172 | 173 | | B.51ab | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171
171 | 172 | 173 | 174 | | B.51ba | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | B.51bb | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172
172 | 173 | 174 | | <u>B.52</u> | 157 | 159 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173
173 | 174 | | C.la | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 174 | | j | 166 | 167 | 168 | 168 | 169 | 169 | 170 | 170 | 171 | 171 | 172 | 172 | 173 | 173 | 174 | 174 | 175 | 173
175 | | | 169 | 174 | 174 | 174 | 161 | 174 | 174 | | 174 | 174 | 174 | -,- | 2,0 | 175 | 117 | 176 | 1/5 | 1/3 | | | 174 | | 175 | | 174 | | | | | | | | | | | 1,0 | | | | C.1c
C.1d | 156 | 157 | <u> 158</u> | <u> 160</u> | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | _174 | | C.Iu | 158 | 158 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | | 166
176 | 167 | 168 | 168 | 169 | 169 | 170 | 170 | 171 | 171 | 172 | 172 | 173 | 173 | 174 | 174 | 175 | 175 | | C.3a | 156 | 176 | 176 | 176 | 176 | 176 | 176 | 176 | 176 | 176 | | | | | | | | 2.0 | | C.3aa | 158 | 157
158 | 158
158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | C.3b | 156 | 157 | 159 | <u>161</u>
159 | 161
161 | 161 | 164 | 164 | 164 | 167 | 167 | <u> 167</u> | <u> 170</u> | 170 | 170 | 173 | 173 | 173 | | C.3c | 156 | 157 | 159 | 159 | 162 | 162
162 | 163 | 164 | 165 | 1.00 | 1.00 | | | | | | | | | C.3d | 156 | 157 | 158 | 159 | 160 | 161 | 163
163 | 164 | 165 | 168 | 169 | 169 | 170 | 172 | 173 | 174 | 175 | 176 | | C.3e | 100 | 137 | 130 | 133 | 100 | TOT | 103 | 163 | 164 | 165 | 167 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | C.3f | | | | | | | | <u>176</u>
176 | 175
175 | 174
174 | 172 | 170 | 170 | 170 | 170 | 171 | 172 | 173 | | C.4aa | | | | | | 1 | | 170 | 1/5 | 1/4 | 172 | 170 | 170 | 170 | 170 | 171 | 172 | 173 | | C.6aa | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 174
168 | 168
169 | 169 | 170 | 171 | 172 | 174 | | C.6ab | | | | | | | 100 | 104 | 171 | 172 | 173 | 174 | 175 | 170
176 | 171 | 172 | 173 | 174 | | D.la | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 177
171 | 178
172 | 178
173 | 179
174 | | D.1b | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 1/3
174 | 174
174 | | D.1c | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | | H.60 | 158 | 158 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 165 | 167 | 168 | 168 | 170 | 171 | 172 | 173 | | į | | | | | | | | | | 166 | 166 | | 200 | 169 | 1,0 | 1/ I | 11 L | T1 9 | ^{*} See "Key" on pages $\ddot{6}4$ and following, INDEX TO "SOLAR-GEOPHYSICAL DATA" | ı | 1959 | | | | | | | | | | | | 1960 | | | | | | | | | | | | |---|--|---|---|--|---|---|--|---|--|---|---|---|--|--|---|---|---|--|---|---|---|--|---|---| | Key * | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug, | Sep | 0ct | Nov | Dec | | A.2a
A.2b
A.2c
A.5a
A.7a | 174
187
175
174
174 | 175
187
176
175
175 | 176
187
177
176
176 | 177
187
178
177
177 | 178
187
179
178
178 | 179
187
180
179
179 | 180
187
181
180
180 | 181
187
182
181
181 | 182
187
183
182
183 | 183
187
184
183
183
185 | 184
187
185
184
184
185 | 185
187
186
185
185 | 186
199
187
186
186 | 187
199
188
187
187 | 188
199
189
188
188 | 189
199
190
189
189 | 190
199
191
190
190 | 191
199
192
191
191 | 192
199
193
192
192 | 193
199
194
193
193 | 194
199
195
194
195 | 195
199
196
195
196 | 196
199
197
196
196 | 197
199
198
197
197 | | A.7b
A.8aa
A.8e
A.8f
A.9a | 174
174
174 | 175
175
175 | 176
176
176 | 177
177
177 | 178 | 179 | 180 | 181 | 182 | ,183 | 184 | 185 | 189
186 | 189
187 | 189
188 | 193
189
196 | 193
190
197 | 193
191
199 | 196
192
210 | 196
193
211 | 196
194
212 | 199
195
212 | 199
196
212 | 199
197 | | A.10a
B.51aa
B.51ab
B.51bb
B.51bb
B.52
C.1a | 174
175
175
175
175
175
174
176
178
185 | 175
176
176
176
176
176
175
178
185 | 176
177
177
177
177
177
176
179
185 | 177
178
178
178
178
178
178
177
180
185 | 178
179
179
179
179
179
178
181
185 | 179
180
180
180
180
180
179
182
185 | 180
181
181
181
181
180
183
185 | 181
182
182
182
182
182
181
184
185 | 182
183
183
183
183
183
182
185 | 183
184
184
184
184
183
186 | 184
185
185
185
185
185
184
187
191 | 185
186
186
186
186
185
188
189
191 | 186
187
187
187
187
187
186
189
191
194 | 187
188
188
188
188
187
190
191
194
196 | 188
189
189
189
189
190
188
191
194 | 189
190
190
190
190
190
189
192
194 | 190
191
191
191
191
191
190
193
201 | 191
192
192
192
192
192
191
194
195
201 | 192
193
193
193
193
193
192
195
201 | 193
194
194
194
194
194
193
196
201 | 194
195
195
195
195
195
194
197
201 | 195
196
196
196
196
196
195
198
199
201 | 196
197
197
197
197
197
196
199
201 | 197
198
198
198
198
198
197
200
201 | | C.1c
C.1d | 175
174
176
178
185 | 176
175
178
185 | 177
176
179
185 | 178
177
180
185 | 179
178
181
185 | 180
179
182
185
200 | 181
180
183
185 | 182
181
184
185 | 183
182
185 | 184
183
186 | 185
184
187
191 | 186
185
188
191 | 187
186
189
191 | 188
187
190
191 | 189
188
191 | 190
189
192 | 191
190
193
202 | 192
191
194
202 | 193
192
195
202 | 194
193
196
202 | 195
194
197
202 | 196
195
198
202 | 197
196
199
202 | 198
197
200
202 | | C.3a
C.3aa
C.3c
C.3ca
C.3e | 174
176
176
182
174 | 175
176
177
182
175 | 176
176
178
182
176 | 177
179
178
182
177 | 178
179
179
182 |
179
179
180
182 | 180
182
180
182 | 181
182
181
182 | 182
182
182
182 | 183
185
183
183 | 184
185
184
184 | 185
185
185
185 | 186
188
195 | 187
188
195 | 188
188
195 | 189
191
195 | 190
191
195 | 191
191
195 | 192
194
195 | 193
194
195 | 194
194
195 | 195
197
195 | 196
197 | 197
197 | | C.3f
C.3g
C.3h
C.4aa
C.4ab | 174 | 175
182 | 176 | 177 | 184 | 180
184 | 182
188 | 185
188 | 188 | 192 | 192 | 192 | 186
197
197 | 187
197
197 | 188
197
197 | 189
198
198 | 190
198
,198 | 191
198
198 | 192
199
199 | 193
199
199 | 194
199
199 | 195
200
200 | 196
200
200
197 | 197
200
200
197 | | C.6aa
C.6ab
D.1a
D.1b
D.1c | 175
180
175
186
190
195 | 176
181
176
186
190
195 | 177
182
177
186
190 | 178
183
178
186
190
195 | 179
184
179
186
190 | 180
184
180
186
190
195 | 181
184
181
186
190 | 182
185
182
186
190
195 | 183
186
183
186
190
195 | 184
187
184
186
190 | 185
187
185
186
190
195 | 186
188
186
186
190
195 | 187
188
187
198
190
195 | 188
189
188
198
190
195 | 189
189
189
198
190
195 | 190
190
190+
198
190
195 | 191
191
191
198
226
195
205 | 192
192
192
198
226
195 | 193
193
193
198
226
195 | 194
194
194
198
226
195 | 195
195
195
198
226
195 | 196
196
196
198
226
196 | 197
197
197
198
226
197 | 198
198
198
198
226
198 | | F.1b
H.60 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 195
194 | 196
195 | 197
19 6 | 198
197 | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | A.2a 198 199 200 201 202 203 204 205 205 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 233 23 | Key * | 1961 | | | | | | | | | | | | 1962 | 2 | | | | - | | | | | | | |--|-------|-------|-----|-----|-----|------|-----|------------|-----|-----|-----|-----|-----|-------|------|------|-------|-------|-------|-------|-----|------|-------------|-----|-----| | A.2c 19 201 211 2 | Key | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | | A.2c 19 200 201 202 203 204 205 206 207 208 209 210 211 21 | A.2a | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 200 | 210 | 211 | 212 | 212 | 214 | 915 | 216 | 017 | -010 | ^10 | | | | A.3b A.5b A.9b A.9b A.9b A.9b A.9b A.9b A.9b A.9 | A.2b | 211 | 211 | 211 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | A.2c | 199 | 200 | 201 | 202 | 203 | A.7a 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 A.7b 204 204 205 205 205 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.7b 204 204 205 205 205 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.7b 204 204 205 205 205 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.8aa 198 199 200 201 202 203 204 205 205 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.7b 204 205 205 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.9aa 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.1b 20 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.1b 20 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.1b 20 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 A.1b 20 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 16 217 218 219 220 221 222 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 211 212 213 214 215 216 217 218 219 220 212 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 215 216 217 218 219 220 212 212 213 214 | | | | | | | | | | | -00 | | 210 | | | | | | | | | | | | | | A.7b 98 99 200 201 202 203 205 205 207 207 208 209 210 211 212 213 214 215 216 217
218 219 220 221 221 213 213 214 215 216 217 218 219 220 221 221 213 213 214 215 216 217 218 219 220 221 221 213 213 214 215 216 217 218 219 220 221 221 213 213 214 215 216 217 218 219 220 221 221 213 213 214 215 216 217 218 219 220 221 213 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 213 214 215 216 217 218 219 220 221 223 2 | | | | | 201 | | 203 | 204 | 205 | 206 | 207 | 208 | 209 | | | | | | | | | | | | | | A. Ba A. Ba A. Ba A. Ba Ba Pa Color 204 204 205 205 205 205 205 208 208 208 212 212 212 213 213 213 213 213 216 216 216 216 210 220 220 220 220 220 220 220 220 220 | | | | | | | | | | 207 | 207 | 208 | | | | | | | | | | | | | | | A. Bab | | | | | | | | | | 208 | 212 | 212 | 212 | 213 | 213 | 213 | | | | | | | | | | | A.9a A.9a A.9a A.9a A.9a A.9a A.9a A.9a | | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | | 212 | 213 | 214 | 215 | | | | | | | | A.10a 198 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 A.11b A.10a 199 200 201 202 203 204 205 206 207 208 209 209 200 211 212 213 214 215 216 217 218 219 220 221 B.51ab 199 200 201 202 203 204 205 206 207 208 209 200 210 211 212 213 214 215 216 217 218 219 220 221 B.51ab 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 B.51ab 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 B.51ab 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 B.51ab 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 B.51ab 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 B.52a 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 B.52a 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 B.52a 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 B.52a 199 200 201 202 203 204 205 206 207 208 209 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 B.52a 199 200 201 202 203 204 205 206 207 208 209 20 | | | 010 | 010 | | | | | | | | | | 223 | 223 | 223 | 223 | 223 | | | | | | | | | A.11b 90 200 201 202 203 204 205 206 207 208 209 249 | | 100 | | | 001 | 000 | | | | | | | | | | | 213 | 214 | 215 | 216 | 217 | 218 | 219 | | | | Section 199 200 201 202 203 204 205 206 207 208 209 210 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | | 1 130 | 200 | 201 | 201 | 202 | | | | | | | | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 219 | 219 | 220 | | | Section 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 222 223 224 225 | | 199 | 200 | 201 | 202 | 50.3 | | | | | | | | 1 000 | 010 | | | | | | | | | | | | B.51bb 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 225 | B.51bb 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 213 214 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 215 216 217 218 219 220 221 222 223 224 216 217 218 219 220 221 222 223 224 216 217 218 219 220 221 222 223 224 218 219 220 221 222 223
224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 218 219 220 221 222 223 224 224 224 224 224 224 224 224 | Secondary Seco | | 199 | 200 | C.1a | | 199 | 200 | 201 | 202 | 203 | 201 202 203 204 205 208 208 208 208 208 208 208 208 208 208 | C.la | 198 | 199 | 200 | 201 | 202 | 203 | C.1c 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | | | 202 | 203 | 204 | 205 | 206 | 207 | | | | | | | | | | | | | | | | | | | C.1d | | | | 208 | 208 | 208 | | 208 | | | | | -20 | | | | 210 | 417 | 210 | 213 | 220 | 221 | 222 | 223 | 224 | | 198 199 200 201 202 203 204 205 206 207 208 | | | | | | | | | | | 208 | | 210 | 211 | incl | uded | in C. | la af | ter J | an. 1 | 962 | | | | | | C.3aa 200 200 200 201 202 203 204 205 206 207 208 209 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | 0.10 | | | | | | | | | | | | | 210 | 211 | 212 | | 214 | | | | 218 | 219 | 220 | 221 | | C.3aa 200 200 200 201 202 203 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 C.3aa 200 200 200 201 202 203 203 206 206 206 206 209 209 209 212 212 212 215 215 215 215 218 218 218 218 212 221 C.3ha 198 199 200 201 202 203 204 205 206 207 208 209 209 209 210 211 212 213 214 215 216 217 218 219 220 221 C.3ha 203 203 203 204 204 204 208 208 208 208 209 209 209 210 211 212 213 214 215 216 217 218 219 220 221 C.4aa 203 203 203 204 204 204 208 208 208 209 209 209 209 209 C.4b 207 207 207 207 207 207 207 207 207 C.4c 198 201 202 202 202 203 204 204 208 208 208 208 209 C.6aa 199 200 201 202 203 204 205 206 207 208 209 210 C.6ab 199 200 201 202 203 204 205 206 207 208 209 210 C.6ab 199 200 201 202 203 204 205 206 207 208 209 210 C.6ac 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 C.6ac 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 C.6ac 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 D.1a 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 D.1b 208 20 | - | | | | | | 206 | | 208 | 210 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | | | | | | C. 3aa 200 200 200 202 203 203 203 203 204 205 206 207 208 209 209 212 212 212 213 214 215 216 217 218 219 220 221 | C.3a | | | | | | 203 | | 205 | 206 | 207 | 200 | 000 | 010 | | | | | | | | | | | | | C. 3h 198 199 200 201 202 203 204 205 206 207 208 209 209 210 211 212 213 214 215 216 217 218 219 220 221 C. 3h C. 3h C. 3h C. 4aa 203 203 204 204 204 208 208 208 209 209 209 210 211 212 213 214 215 216 217 218 219 220 221 C. 4aa 203 203 203 204 204 204 208 208 208 209 209 209 C. 4ab 203 203 203 204 204 204 208 208 208 209 209 209 C. 4b 207 207 207 207 207 207 207 207 207 C. 4c 198 201 202 202 202 203 204 207 207 207 207 207 C. 6aa 199 200 201 202 203 204 207 206 207 208 209 209 C. 6ab 199 200 201 202 203 204 205 206 207 208 209 210 C. 6ab 199 200 201 202 203 204 205 206 207 208 209 C. 6ac 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 C. 6ac 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 D. 1a 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 D. 1b 208 20 | | | | | | | 203 | | 205 | | 207 | | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | C. 3ha | | | | | | | | 206 | 206 | 206 | 209 | | 209 | 212 | 212 | 212 | 215 | 215 | 215 | 218 | 218 | 218 | 221 | 221 | 221 | | C. 3fd | | 198 | 199 | 200 | 201 | 202 | 203 | 204
| 205 | 206 | 207 | 208 | | | | | | | | | | | | | | | C.4ab 203 203 203 204 204 204 208 208 208 209 209 209 210 213 213 213 214 215 216 217 218 219 220 221 222 222 222 222 222 222 222 223 204 205 205 205 205 205 205 205 205 205 205 | | | | | | | | | | | | | | 210 | 211 | 212 | | | | | | | | | | | C.4ab 203 203 203 204 204 204 208 208 208 209 209 209 209 210 211 212 213 214 215 216 219 219 219 222 222 222 222 222 222 223 204 205 206 207 207 207 207 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 222 222 222 223 223 223 223 223 | | 202 | 202 | 202 | 004 | 004 | 504 | | | | | | | - | - | _ | 221 | 221 | 221 | 221 | 221 | | | | | | C.4b | | | | | | | | | | | | | | 213 | 213 | 213 | 216 | 216 | 216 | 219 | 219 | 219 | 222 | | | | C.4c 198 201 202 202 202 203 204 207 | | 200 | 200 | · · · · · · | | | | C.6aa 199 200 201 202 203 204 207 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 C.6ac 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 213 214 215 216 219 219 219 219 220 221 222 213 214 215 216 219 219 219 220 221 222 213 214 215 216 219 219 219 219 220 221 222 213 214 215 216 219 219 219 219 220 221 222 213 214 215 216 219 219 219 220 221 222 213 214 215 216 219 219 219 219 220 221 222 210 214 215 216 219 219 219 219 219 219 219 219 219 219 | · · | 108 | 201 | | | | | | | | | | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | C.6ab 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 203 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 219 220 221 222 203 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 203 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 203 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 203 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 205 216 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 210 210 210 210 210 210 210 | ī | C.6ac 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 | 220 | 221 | 222 | | D.1a 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 219 219 219 220 221 222 221 | | 200 | 200 | -01 | 202 | 200 | D.1b 208 | D.la | 199 | 200 | 201 | 202 | 203 | D.1c 226 | | 208 | F.1a 199 200 201 202 203 204 204 206 207 208 209 210 211 212 213 214 223 223 223 223 223 223 223 223 223 22 | | | | | 226 | 226 | F 1h 100 200 001 000 000 000 | r.la | 199 | 200 | 201 | 202 | 203 | 204 | F.1b | 199 | 200 | 201 | 202 | 203 | 204 | 205
205 | 206 | 207 | 208 | 210 | 210 | 23.1 | 212 | 212 | 014 | 015 | 016 | 017 | 010 | | | | | | H.60 198 199 200 201 202 203 204 205 206 207 208 209 211 213 214 215 216 217 218 219 220 221 222 | | 198 | H.61 130 133 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 207 207 207 207 207 207 207 207 207 207 | H.61 | | | | | | | • | | | | | 205 | | | | | | | | | | | | | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | 1 | 1963 | | | | | | | | | | | _ 1 | 1964 | | | | | 3 | | 6.u.a | c on | Oct | Nov | Dec | |------------------|------------|------------|------------|------------|-------------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------| | Key | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | | | | | A.2a | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234
247 | 235
247 | 236
247 | 237
247 | 238
247 | 239
247 | 240
247 | 241
247 | 242
247 | 243
247 | 244
247 | 245
247 | | A.2b | 235 | 235 | 235 | 235
226 | 235
227 | 235
228 | 235
229 | 235
230 | 235
231 | 235
232 | 235
233 | 235 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | | A.2c
A.3b | 223
222 | 224
223 | 225
224 | 225 | none | === | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 |
 A.5a | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237
237 | 238
238 | 239
239 | 240
240 | 241
241 | 242
242 | 243
243 | 244
244 | 245
245 | | A.7a | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229
231 | 230
231 | 231
234 | 232
234 | 233 | 234
237 | 235
237 | 236
237 | 240 | 240 | 240 | 243 | 243 | 243 | 248 | 248 | 248 | | A.7b
A.8aa | 226
222 | 226
223 | 226
224 | 228
225 | 228
226 | 228
227 | 231
228 | 229 | 231 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | | A.8ab | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 245 | 245 | 245 | 245 | 245 | 245 | 245 | 245 | 245
242 | 245
243 | 245
244 | 245
245_ | | A.8ac | | | | | | | | | | | | | 240
245 241
245 | 245 | 245 | 245 | 245 | | A.8ad | 222 | | | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | | A.9a
A.9b | 662 | | - | 223 | 220 | 221 | 220 | 100 to 40 | | | | | | | | | | | 040 | 041 | 040 | 042 | 244 | 250
245 | | A.10a | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236
247 | 237
241 | 238
241 | 239
241 | 240
244 | 241
244 | 242
245 | 243
245 | 244 | 240 | | A.llaa | | | | | | | | | | | | | 243 | 247 | 247 | 249 | 255 | 264 | 266 | 266 | 5,5 | | | | | A.11c | | | | | | | | | | 249 | | | | | | | | 010 | | 010 | 262 | 264 | OVE | 246 | | B.51aa | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236
236 | 237 | 238
238 | 239
239 | 240
240 | 241
241 | 242
242 | 243
243 | 244
244 | 245
245 | 246
246 | | B.51ab | 223 | 224 | 225 | 226 | 227 | 228
228 | 229
229 | 230
230 | 231
231 | 232
232 | 233
233 | 234
234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | _,_ | | | B.51ba
B.51bb | 223
223 | 224
224 | 225
225 | 226
226 | 227
227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 045 | 046 | | B.51ca | 223 | 22.7 | LLJ | LLU | | | | | | | | | | | | | | | | | | | 245
245 | 246
246 | | B.51cb | | | | | 007 | 000 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | | B.52
C.1a | 223 | 224 | 225
224 | 226
225 | <u>227</u>
226 | 228
227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | | U,1a | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 248 | 248 | | | | | | 005 | 000 | 007 | 228 | 229 | 230 | 231 | 232 | 233 | 240 | 240
235 | 240
236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | | C.1d | 222
225 | 223
226 | 224
227 | 225
228 | 226
229 | 227
230, | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 248 | 248 | | C.3a | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237
239 | 238
239 | 239
239 | 240
242 | 241
242 | 242
242 | 243
245 | 244
245 | 245
245 | | C.3aa | 224 | 224 | 224 | 227 | 227 | 227
227 | 230
228 | 230
229 | 230
230 | 233
231 | 233
232 | 233
233 | 236 | 236
235 | 236
236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | | C.3h
C.3ha | 222 | 223
223 | 224
224 | 225
225 | 226
226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | | C.31 | 222 | 223 | 224 | 225 | 229 | 229 | 229 | | | | | | | | | | | | 252 | 252 | 252 | 252 | 252 | 252 | | C.3k | | | | 000 | 200 | 000 | 220 | 230 | 230 | 234 | 234 | 234 | 237 | 237 | 237 | 240 | 240 | 240 | 243 | 243 | 243 | 246 | 246 | 246 | | C.4aa
C.4b | 225 | 225
223 | 225
224 | 228
225 | 228
226 | 228
227 | 230
228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | | C.5a | | | | | | | | | | 249 | | 004 | 025 | 026 | 227 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | | Ċ.6 | 223 | 224 | 225 | 226 | 227 | 228 | 229
230 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 230 | 239 | 240 | ~4T | L-76. | 270 | <u>-17</u> | ,0 | • | | | 231 | 231 | 231 | 231 | 231 | 231 | 231 | 231 | | | | | | | | | | | | | 040 | 044 | 045 | 046 | | C.8ba | -51 | -51 | -01 | 201 | | | | | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239
239 | 240
240 | 241
241 | 242
242 | 243
243 | <u>244</u>
244 | 245
245 | 246
246 | | D.1a | 223 | 224 | | | | 228 | 229 | 230
233 | | 232
233 | 233
233 | 234
233 | 235
245 | 236
245 | | 238
245 | 239 | | 245 | | 245 | 245 | - : : - | 245 | | D.1b
D.1c | 233 | | | | | 233
233 | 233
233 | 233 | | 233 | 233 | | 245 | 245 | | | 245 | | 245 | | 245 | 245 | | 245 | | F.1a | 223 | | | | | 228 | | 230 | | 232 | | | 235 | | | | | | | | | 244 | | 246
246 | | F.1b | 223 | | | | | 228 | | 230 | 231 | 232 | | | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 240 | | | • | | | | | | | | 234 | | | | 243 | 243 | 243 | 243 | 243 | 243 | 243 | | | | | | | F.1c
F.1d | | | | | | | | | | | | | | | | | 243 | 243 | 243 | | | | | | | H.60 | 222 | 223 | 3 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | . 242 | 243 | 244 | 240 | | ,,,,,, | , | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | Key * | 1969
Jan | 5
Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nou | Daa | 1966 | | M | 0 | 14 | | | | | | | | |---------------------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | A.2a | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 0ct
255 | Nov
256 | Dec
257 | Jan
258 | Feb
259 | Mar
260 | Apr
261 | May
262 | Jun
263 | Jul | | Sep | Oct | Nov | Dec | | A.2b
A.2c | 258
247 | 258
248 | 258
249 | 258
250 | 258
251 | 258
252 | | 258
254 | 258
255 | 258
256 | 258
257 | 258
257 | 271
258 | 271
259 | 271
260 | 271
261 | 271
262 | 271
263 | 264
271
264 | 265
271
265 | 266
271
266 | 267
271
267 | 268
271
268 | 269
271 | | A.3a
.A.3b | 246 | 247 | 248 | 249 | | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 269
266 | 269
267 | 269
268 | 269
270
269 | | A.5a
A.7a | 246
247 | 247
248 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 | 253
253 | 254 | 255
256 | 256
257 | 257
257 | 258
258 | 259
259 | 260
260 | 261
261 | 262
262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | | A.7b
A.8aa | 249
246 | 249
247 | 249
248 | 252
249 | 252
250 | 252
251 | 256
252 | 256
253 | 256
254 | 258
255 | 258
256 | 258
257 | 261
258 | 261
259 | 261
260 | 264
261 | 264
262 | 264
263 | 267
264 | 267
265 | 267
266 | 270
267 | 270
268 | 270
269 | | A.8ab
A.8ac | 257
246 | 257
247 | 257
248 | 257
249 | 257
250 | 257
251 | 257
252 | 257
253 | 257
254 | 257
255 | 257
256 | 257
257 | 269
258 | 269
259 | 269
260 | 269
261 | 269
262 | 269
263 | 269
264 | 269
265 | 269
266 | 269
267 | 269
268 | 269
269 | | A.8ad
A.9a | 257
246 | 257
247 | 257
248 | 257
249 | 257
250 | 257
251 | 257
252 | 257
253 | 257
254 | 257
255 | 257
256 | 257
257 | 269
258 | 269
259 | 269
260 | 269
261 | 269
262 | 269
263 | 269
264 | 269
265 | 269
266 | 269
267 | 269
268 | 269
269 | | A.9b
_ <u>A.10a</u> | 250
246 | 250
 | 254
 | 254
 | 257 | 257 | 257
 | 259
253 | 260
254 | 263
255 | 263
257 | 263
257 | 263
258 | 263
259 | 263
260 | 266
261 | 266
262 | 266
264 | 267
264 | 267
265 | 267
266 | 268
267 | 268 | 269
269 | | A.10b
A.10c | | | | | | | | | | 255 | 257
256 | 257
257 | 258
258 | 259
259 | 260
260 | 261
261 | 262
262 | 264
263 | 264
264 | 265
265 | 266
266 | 267
267 | 268
268 | 269
269 | | A.10d
A.11aa
A.11ab | | | 279
286 276 | 276 | 276 | 276 | 264 | 261
276 | 262
276 | 263
264 | 264
265 | 265
267 | 266
267 | 267
269 | 268
269 | 269
269 | | A.11ac
A.11ad | | | 200 | | 200 | 200 | 200 | 200 | 200 | 200 | | 270 | 270 | 270 | 270 | 270 | 271 | 271 | 271 | 279
271 | 271 | 272
271 | 273
271 | 274
271 | | A.11ae
A.13a | | | | | | | | | | | | 306 | 261
306 | 261
306 | 261
306 | 267
261
306 | 267
262
306 | 263
306 | 264
306 | 265
306 | 266 | 206 | 272 | 200 | | B.51aa
B.51ab | 247
247 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 | 253
253 | 254
254 | 255
255 | 256
256 | 257
257 | 258
258 | | 500 | | 300 | 300 | 300 | 300 | 300 | 306 | 306 | 306 | 306 | | B.51ba
B.51ca | 247
247 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 | 253
253 | 254
254 | 255
255 | 256
256 | 257
257 | 258
258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | | B.51cb
B.52 | 247
247 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 |
253
253 | 254
254 | 255
255 | 256
256 | 257
257 | 258
258 | 259
259 | 260
260 | 261
261 | 262
262 | 263
263 | 264
264 | 265
265 | 266
266 | 267
267 | 268
268 | 269
269 | 270
270 | | C.1a | 246
249 | 247
250 | 248
251 | 249
252 | 250
253 | 251
255 | 252
255 | 253
256 | 254
257 | 255
258 | 256
259 | 257
260 | 258
261 | 259
262 | 260
263 | 261
264 | 262
265 | 263
266 | 264
267 | 265
268 | 266 | 267 | 268 | 269 | | C 1ho | | | | | | | | | | | | | | 266 | | 266
268 | 266 | | | 270 | | | | | | C.1ba
C.1d | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 050 | 057 | 0.50 | 050 | | | | | | | 269
271 | 272 | 273 | 274 | | 0.14 | 249 | 250 | 251 | 252 | 253 | 255 | 255 | 256 | 257 | 255
258 | 256
259 . | 257
260 | 258
261 | 259
262 | 260
263 | 261
264 | 262
265 | 263
266 | 264
267 | 265
268 | 266
269 | 267
272 | 268
273 | 269
274 | | C.3a
C.3aa | 246
248 | 247
248 | 248
248 | 249
251 | 250
251 | 251
251 | 252
254 | 253
254 | 254
254 | 255
257 | 256
257 | 257
257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 270
265 | 271
266 | 267 | 268 | 269 | | C.3h
C.3ha | 246
246 | 247
247 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 | 253
253 | 254
254 | 255
255 | 256
256 | 257
257 | 258 | 259 | 260 | 261 | 262 | 263 | | | | | | | | C.3i
C.3j | | | | | 251 | 252
252 | 253
253 | 253
253 | 254
254 | 255
255 | 256
256 | 257 | 258 | | 261 | | | | | | | | | | | C.3k
C.31 | 252 | 252 | 252 | 256 | 256 | 256 | 263 | 263 | 263 | 263 | 263 | 263 | 258 | 259 | 260 | 261 | 262 | 263 | 264
264 | 265
265 | 266
266 | 267
267 | 268
268 | 269
269 | | C.3n
C.4aa | 249
246 | 249
247 | 249 | 252 | 252 | 252 | 255 | 255 | 255 | 258 | 258 | 258 | 260
261 | 260
261 | 260
261 | 261
264 | 262
264 | 263
264 | 264
267 | 265
267 | 266
267 | 267
270 | 268
270 | 269
270 | | C.4b
C.5b
C.5c | 240 | 24/ | 248 | 249
279 | 250
279 | 251
279 | 252
279 | 253
279 | 254
279 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264
275 | 265
275 | 266
275 | 267
275 | 268
275 | 269
277 | | C.6
C.8bc | 247
247 | 248
248 | 249
249 | 250
250 | 251
251 | | 253 | | | 279
256 | 276
257 | 276
258 | 276
259 | 276
260 | 264
261 | 276
262 | 263 | 264
264 | 265
265 | 267
266 | 267
267 | 269
268 | 269
269 | 269
270 | | C.8be
D.1a | 247 | 248 | 249 | 250 | 251 | 252
252 | 253
253 | 254
254 | 255
255 | 256
256 | 257
257 | 258
258 | 259
259 | 260
260 | 261
261 | 262
262 | 263
263 | 264
264 | 265 | 266 | 267 | 268 | 269 | 270 | | D.1b
D.1c | 258 | 258 | 258
258 | 258
258 | 258
258 | 258
258 | 258 | 258
258 | 258 | 258 | 258
258 | 258
258 | 270 | 270 | 270 | 270 | 270 | 270 | 265
270
270 | 266
270
270 | 267
270
270 | 268
270
270 | | 270
270
270 | | D.1d
D.1f | | | | | | | | | | | | | 270 | 270 | 270 | 270 | | 270 . | 270
270
270 | 270
270
270 | 270
270
270 | 270
270
273 | 270 | 270
270
273 | | F.la
F.lb | 247
247 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 | 253
253 | 254
254 | 255 | 256 | 257
257 | 258
258 | 259
259 | 260 | 261
261 | 262
262 | | 264 | 265
265 | 266
266 | 267
267 | 268
268 | 269 | 270
270 | | F.1c
F.1d | 247
247 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 | 253
253 | | 255
255 | 256 | 257
257 | 258
258 | 259 | 260 | 261 | 275 | | 275 | 275
274 | 275
274 | 275
274 | 274 | | 274 | | F.1e
H.60 | | | | | | | | | | | | | | | | | | | 265 | 266 | 267 | 268 | | 270 | | н.63 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258
282 | 259
282 | 260
282 | 261
282 | 262 | 263
282 | 264
282 | 265
282 | 266 | 267 | 268 | 269 | | Key * | 1967
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | 1968
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | |----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | A.1
A.2a
A.2b
A.2c | 271
270
282
270 | 272
271
282
271 | 273
272
282
272 | 274
273
282
273 | 275
274
282
274 | 276
275
282
275 | 277
276
282
276 | 278
277
282
277 | 279
278
282
278 | 280
279
282
279 | 281
280
282
280 | 282
281
282
281 | 283
282
295
282 | 284
283
295
283 | 285
284
295 | 286
285
295 | 287
286
295 | 288
287
295 | 289
288
295 | 290
289
295 | 291
290
295 | 292
291
295 | 293
292
295 | 294
293
295 | | A,3a
A.3b | 271
270 | 272
271 | 273
272 | 274
273 | 275
274 | 276
275 | 277
276 | 278
277 | 279
278 | 280
279 | 281
280 | 282
281 | 283
282 | 284
283 | 284
285
284 | 285
286
285 | 286
287
286 | 287
288
287 | 288
289
288 | 289
290
289 | 290
291
290 | 291
292
291 | 292
293
292 | 293
294
293 | | A.4
A.5
A.5a | 271
271
270 | 272
272
271 | 273
273
272 | 274
274
273 | 275
275
274 | 276
276
275 | 277
277
276 | 278
278
277 | 279
279
278 | 280
280
279 | 281
281
280 | 282
282
281 | 283
283
282 | 284
284
283 | 285
285
284 | 286
286
285 | 287
287
286 | 288
288
287 | 289
289
288 | 290
290
289 | 291
291
290 | 292
292
291 | 293
293
292 | 294
294
293 | | A.7b
A.8aa
A.8ac | 271
270
270 | 272
271
271 | 273
272
272 | 275
273
273 | 275
274
274 | 276
275
275 | 277
276
276 | 278
277
277 | 279
278
278 | 280
279
279 | 282
280
280 | 282
281 | 283
282 | 284
283
283 | 285
284
284 | 286
285 | 287
286 | 288
287 | 289
288 | 290
289 | 291
290 | 292
291 | 293
292 | 294
293 | | A.8g
A.9a | 270
271 | 271
272 | 272
273 | 273
274 | 274
275 | 275
276 | 276
277 | 277
278 | 278
279 | 279
280 | 280
281 | 281
281
282 | 282
282
283 | 283
284 | 284
285 | 285
285
286 | 286
286
287 | 287
287
288 | 288
288
289 | 289
289
290 | 290
290
291 | 291
291
292 | 292
292
293 | 293
293
294 | | A.9b
A.10a
A.10b | 271
270
270 | 272
271
271 | 273
272
272 | 274
273
273 | 275

275 | 276

275 | 277
277
276 | 278
277
277 | 279
279 | 280
279
279 | 281
280
280 | 282

281 | 283

282 | 284
283 | 285
284
284 | 286
285
285 | 287
287 | 288
287
287 | 289
288
288 | 290
289
289 | 291
290
290 | 292
291
291 | 293
292
292 | 294
293
293 | | A.10c
A.10d | 270
270 | 271
271 | 272
272 | 273
273 | 274
274 | 275
275 | 276
276 | 277
277 | 278
278 | 280
280 | 280
280 | 281
281 | 282
282 | 283
283 | 284
284 | 285
285 | 286
286 | 287
287 | 288
288 | 289
289 | 290
290 | 291
291 | 292
292 | 293
293 | | <u>A.10e</u>
A.11aa
A.11ab | 271
275 | 272
276 | 273
277 | 274
278 | 275
279 | 276
280 | 277
281 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 287
288 | 288
289 | 289
290 | 290
291 | 291
292 | 292
293 | 293
294 | | A.11ac
A.11ae
A.11d | 271
 | 272
272 | 273
273
278 | 274
274
279 | .275

279 | 276
280 | 277
281 | 278

282 | 279
279 | 280
280 | 281 | | | | | | | 288
288 | 289
289 | 290
290 | 291
291 | 292
292 | 293
293 | | | A.12aa
A.12ab
A.13a | 305 | 305 | 305 | 305 | 282
282
305 | 282
282
305 | 282
282
305 | 282
282
305 | 283
283
305 | 284
284
305 | 285
285
281 | 286
286
281 | 287
287
282 | 288
288
283 | 289
289 | 290
290 | 291
291 | 292
292 | 293
293 | 298
298 | 298
298 | 298
298 | 300
300 | 301
301 | | B.51ca
B.51cb | 271
271 | 272
272 | 273
273 | 274
274 | 275
275 | 276
276 | 277
277 | 278
278 | 279
279 | 280
280 | 281
281 | 282
282 | 283
283 | 284
284 | 284
285
285 | 285
286
286 | 286
287
287 | 287
288
288 | 288
289
289 | 289
290
290 | 290
291
291 | 291
292
292 | 292
293
293 | 293
294
294 | | <u>B.52</u>
C.1a
C.1ba | 271
270
275 | 272
271
276 | 273
272
277 | 274
273
278 | 275
274
279 | 276
275
280 | 277
276
281 | 278
277
282 | 279
278
283 | 280
279
284 | 281
280
285 | 282
281
286 | 283
282
287 | 284
283
288 | 285
284
289 | 286
285
290 | 287
286
291 | 288
287
292 | 289
288
293 | 290
289
294 | 291
290
295 | 292
291
296 | 293
292
297 | 294
293
298 | | C.1d | 270
275 | 271
276 |
278
272
277 | 273
278 | 274
279 | 275
280 | 276
281 | 277
282 | 278
283 | 279
284 | 280
285 | 281
286 | 282
287 | 283
288 | 284
289 | 285
290 | 286
291 | 287
292 | 288
293 | 289
294 | 290
295 | 291
296 | 292
297 | 293
298 | | C.1g
C.3a
C.3k | 270
270 | 271
271 | 272
272 | 273
273 | 274
274 | 275
275 | 276
276 | 277
277 | 278
278 | 279
279 | 280 | 281 | 295
282 | 295
283 | 295
284 | 295
285 | 295
286 | 295
287 | 288 | 289 | 290 | 291 | 292 | 293 | | C.31
C.3m | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280
280
280 | 281
281
281 | 282

282 | 283
283
283 | 284
284
284 | 285
285 | 286
286 | 287

287 | 288

288 | 289
289 | 290
290
290 | 291
291
291 | 292
292 | 293
293
293 | | C.3n
C.3p
C.3q | 270 | 271 | 272
272 | 273
273 | 274
274 | 275
275 | 276
276 | 277
277 | 278
278 | 279
279 | 280
280
280 | 281
281
281 | 282
282
282 | 283
283 | 284

284 | 285

285 | 286
286 | 287

287 | 288
288
288 | 289
289
289 | 290
290
290 | 291
291
291 | 292
292
292 | 293
293
293 | | C.3r
C.3s
C.4aa | 277 | 277 | 277 | 277 | 277 | 277 | 277 | 278 | 279 | 279
280 | 280 | 281 | 282
282 | 283 | 284
284 | 285
285 | 286
286 | 287
287 | 288
288 | 289
289 | 290
290 | 291
291 | 292
292 | 293
293 | | C.4b
C.4d | 270
277 | 271
277 | 272
277 | 273
277 | 274
277 | 275
277 | 276
277 | 278
278
278 | 279
279
279 | 280
280
280 | 281
281 | 282
282
282 | 283
283
283 | 284
284 | 285
285
285 | 286
286
286 | 287
287
287 | 288
288
288 | 289
289
289 | 290
290
290 | 291
291
291 | 292
292
292 | 293
293
293 | 294
294
294 | | C.4e
C.4f
C.5b | 278 | 278 | 278 | 280 | 280 | 281 | 281 | 283 | 283 | 284 | 285 | 287 | 283
287 | 284
288 | 285
285
289 | 286
286
290 | 287
287
291 | 288
288
292 | 289
289
293 | 290
290
294 | 292
291
295 | 292
292
296 | 293
293
297 | 294
294
299 | | C.5c
C.5d
C.6 | 271

271 | 272 | 273
278
273 | 274
279
274 | 275
279
275 | 276
280
276 | 277
281
277 | 278
282
278 | 279

279 | 280
280 | 281
281 | 282 | 283 | 284
284 | 285 | 286
286 | 287
287 | 288
287 | 289
288 | 290
289 | 291
290 | 292
291 | 293
292 | 294
293 | | C.8
C.8ba | 284 | 284 | 284
273 | 284
274 | 284
275 | 284
276 | | | | | | | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | | C.8be
D.1a | 271
271 | 272
272 | 273 | 274 | 275 | 276 | 277

277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | | D.1b
D.1c
D.1d
D.1e | 282
282
271
297 | 282
282
272 | 282
282
273 | 282
282
274 | 282
282
275 | 282
282
276 | 282
282
277 | 282
282
278 | 282
282
279 | 282
282
280 | 282
282
281 | 282
282
282 | 294
294
283 | 294
294
284 | 294
294
285 | 294
294
286 | 294
294
287 | 294
294
288 | 294
294
289 | 294
294
290 | 294
294
291 | 294
294
292 | 294
294
293 | 294
294
294 | | D.1f
F.1a | 277
271 | 277
272 | 277
273 | 280
274 | 280
275 | 280
276 | 283
277 | 283
278 | 283
279 | 285
280 | 285
281 | 285
282 | 290
283 | 290
284 | 290
285 | 291
286 | 291
287 | 291
288 | 295
289 | 295
290 | 295
291 | 298
296
292 | 298
296
293 | 296
294 | | F.1b
F.1c
F.1d | 271
288
288 | 272
288
288 | 273
288
288 | 274
288
288 | 275
288
288 | 276
288
288 | 277
288
288 | 278
288
288 | 279
288
288 | 280
280
288 | 281
281
288 | 282
282
282 | 283
283
288 | 284
284
284 | 285
285
285 | 286
286
286 | 287
287
287 | 288
288
288 | 289
289
289 | 290
290
290 | 291
291
291 | 292
292
292 | 293
293
293 | 294
294
294 | | F.1e
H.60
H.62 | 271
270 | 272
271 | 273
272 | 274
273 | 275
274 | 276
275 | 277
276 | 278
277 | 279
278 | 280
279 | 281
280 | 282
281 | 282 | 284
283 | 285
284 | 286
285 | 287
286 | 288
287 | 289
288 | 290
289 | 291
290 | 292
291 | 293
292 | 294
293 | | H.63 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | | | | | | | | | | | | 299 | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | | | | | - | | JULIAN GE | N III DIONE | אות | | | | | |------------------|--------------------|--------------------|----------------|----------------|--------------------|-------------------|------------------|-------------------|--------------------------|--------------------|--------------------|--------------------| | Key* | 1969
Jan | Feb | Mar | Ann | Mau | 1 | 1 | • | | | | | | ncy | Serial | reb | mar. | Apr | May | June | July | Aug | Sep | 0ct | Nov | Dec | | | # pag | e # pag | ge # pag | je # pag | je # pag | ge # pag | je # pag | je # pag | je # pag | je # page | e # pag | e # page | | A.1 | 295 | 296 | 297 | 298 | 299 4 | | | | | | 305 28 | | | A.2a | 294 | 295 | 296 | 297 | 298 | 299 7 | 300 7 | 301 7 | | | 304 7 | | | A.2b
A.2c | 307 6
294 | | | | | | | | | | 307 6 | 307 6 | | A.3a | 294
295 | 295
296 | 296
297 | 297
298 | 298 | 299 7 | | | | | 304 7 | 305 7 | | A, 3b | 295 | 296 | 297 | 298 | 299 41
299 72 | | | | | | 305 28 | | | A.4 | 295 | 296 | 297 | 298 | 299 41 | | | | | | 305 63 | | | A.5 | 295 | 296 | 297 | 298 | 299 41 | | | | | | 305 58
305 28 | | | A.5a | 295 | 296 | 297 | 298 | 299 72 | 300 61 | 301 69 | 302 71 | 303 69 | | 305 63 | 306 65 | | A,7b | 295 | 296 | 297 | 298 | <u>299 41</u> | | | | | 304 36 | 305 28 | 306 28 | | A.8aa
A.8ac | 294
294 | 295
295 | 296
296 | 297
297 | 298 | 299 7 | 300 7 | 301 7 | 302 7 | | 304 7 | 306 28
305 7 | | A.8g | 294 | 295 | 296 | 297 | 298
298 | 299 7
299 7 | | | 302 7 | 303 7 | 304 7 | 305 7 | | A.9a | 295 | 296 | 297 | 298 | 299 41 | | | 301 7
302 34 | | | 304 7
305 28 | | | A.9b | 295 | 296 | 297 | 298 | 299 41 | | | 302 34 | 303 34 | | 305 28 | | | A. 10a | 294 | 295 | 296 | 297 | 298 | 299 29 | 300 20 | 301 22 | | | 304 25 | 306 28
305 19 | | A.10b
A.10c | 294
294 | 295 | 296 | 297 | 298 | 299 28 | | 301 21 | 302 20 | 303 22 | 304 24 | 305 18 | | A. 10d | 294 | 295
295 | 296
296 | 297
297 | 298
298 | 299 31 | | 301 24 | 302 23 | | 304 27 | 305 21 | | A. 10e | 294 | 295 | 296 | 297 | 298 | 299 32
299 30 | | 301 25
301 23 | 302 24
302 22 | | 304 28 | 305 22 | | A.llaa | 295 | 296 | 297 | 298 | 299 84 | | | 302 81 | 303 79 | 303 24
304 83 | 304 26
305 73 | 305 20
306 74 | | A.11ab | 299B 58 | 300B 60 | 301B 86 | 302B 64 | 3038 80 | | 305B 46 | 306R 52 | 307B 55 | 308B 65 | 309B 63 | 310B 36 | | A.11e | | 2010105 | | | | | 301 64 | 302 34 | 303 34 | 304 36 | 305 28 | 306 28 | | A.12aa
A.12ab | 301B120
301B121 | 301B126
301B127 | | | 303B 96 | | | 306B 68 | 307B 70 | 308B 81 | 309B 78 | 3108 52 | | A. 12ba | 2018121 | 2010751 | 303B113
296 | 303B119
297 | 303B 97
298 | 304B 93
299 37 | | 306B 69 | 307B 70 | 308B 82 | 3098 79 | 3108 53
305 25 | | A.12bb | | | | | | £33 3/ | 300 27 | 301 29 | 302 29 | 303 3 1 | 304 31 | 305 25
305 26 | | A.13a | 294 | 295 | 296 | 297 | 298 | 299 33 | 300 24 | 301 26 | 302 25 | 303 27 | 304 29 | 305 28 | | A.13b | | | 296 | 297 | 298 | 299 34 | 300 25 | 301 27 | 302 26 | 303 28 | 306B 99 | 3068100 | | A.13c
B.51ca | 294
295 | 295 | 296 | 297 | 298 | 299 36 | 300 26 | 301 28 | 302 28 | 303 30 | 304 30 | 305 24 | | B.51ca | 295
295 | 296
296 | 297
297 | 298 | 299 104 | 300 88 | 301 94 | 302 95 | 303 95 | 304 100 | 305 92 | 306 92 | | B.52 | 295 | 296 | 297 | 298
298 | 299 105
299 106 | 300 189
300 90 | 301 95
301 96 | 302 96
302 97 | 303 9 <u>6</u>
303 97 | 304 101 | 305 93 | 306 93 | | B,53 | | | | | | 300 30 | 301 90 | 302 97 | 303 97 | 304 102 | 305 94 | 306 94
306 96 | | C.1a | 294 | 295 | 296 | 297 | 298 | 299 10 | 300 10 | 301 10 | 302 10 | 303 10 | 304 10 | 306 96
305 10 | | C.1ba | 299B 10 | 300B1 4 | | 302B 4 | 303B 4 | | 305B 4 | 306B 4 | 307B 4 | 308B 4 | 309B 4 | 310B 4 | | C.1d | 294
299B 35 | 295
300B 29 | 296 | 297 | 298 | 299 18 | 300 15 | 301 14 | 302 14 | 303 15 | 304 13 | 305 12 | | C.1e | 2990 33 | 300D Z3 | 301B 35 | 302B 37 | 303B 48 | 304B 43 | 3058 30 | 306B 34 | 307B 34 | 308B 38 | 309B 33 | 310B 23 | | C.3 | 299B 41 | 300B 38 | | 302B 45 | 303B 57 | 304B 51 | 305B 34 | 306B 35 | 307B 24
307B 35 | 308B 27
308B 39 | 309B 23
309B 34 | 310B 17
310B 24 | | C.3a | 294 | 295 | 296 | 297 | 298 | - | e C.3!) | 0005 00 | 0070 | 3000 03 | 2020 34 | 3100 24 | | C.3k | 294 | 295 | 296 | 297 | 298 | | e C.3) | | | | | | | C.31
C.3m | 294 | 205 | | 297 | | | | | | M | | | | C.3n | 294 | 295
295 | 296
296 | 296
297 | 298 | | <u>= C.3)</u> | | | | | | | C.3p | 294 | 295 | 296 | 297 | 298
298 | | e C.3) | | | | | | | C.3q | 294 | 300B 38 | | 297 | 298 | | e C.3)
e C.3) | | | | | | | C.3r | 294 | 295 | 296 | 297 | 298 | 1 | e C.3) | | | | | | | C.3s | 294 | 295 | 296 | 297 | 298 | | e C.3) | | | | | | | C.4aa
C.4b | 295
295 | 296 | 297 | 298 | 299 87 | 300 74 | 301 81 | 302 84 | 303 82 | 304 86 | 305 77 | 206 70 | | C.48 | 295 | 296
296 | 297
297 | 298
298 | 299 87 | 300 74 | 301 81 | 302 84 | 303 82 | | 305 77
305 77 | 306 79
306 79 | | C.4e | 295 | 296 | 297 | 298 | 299
87
299 87 | 300 74 | 301 81 | 302 84 | 303 82 | 304 86 | 305 77 | 306 79 | | C.4f | 295 | 296 | 297 | 298 | 299 87
299 87 | 300 74
300 74 | 301 81
301 81 | 302 84 | 303 82 | 304 86 | 306 77 | 306 79 | | C.5b | 299B 57 | 300B 58 | 3028 89 | 303B108 | 304B104 | 304B 76 | 305B 45 | 302 84
306B 51 | 303 82
311B 53 | 304 86 | 305 77 | 306 79 | | C.5c
C.6 | 295
294 | 296 | 297 | 298 | 299 86 | 300 73 | 301 80 | 302 83 | 311B 53
303 81 | 311B 71
304 85 | 3128 86
305 75 | | | 0.0 | 299B 36 | 295
300B 30 | 296
3010-26 | 297 | 298 | 299 19 | 300 16 | 301 15 | 302 15 | 303 16 | 305 75
304 14 | 306 76
305 13 | | D. 1a | 295 | 296 | 301B 36
297 | 302B 38
298 | 303B 49
299 100 | 304B 44 | 305B 31 | 306B 74 | | | | 305 13
_306 77 | | D.16 | 306 89 | 306 89 | 306 89 | 306 89 | 299 100
306 89 | 300 84 | 301 90 | 302 92 | 303 92 | 304 97 | 305 89 | 306 87 | | D.Ic | 306 90 | 306 90 | 306 90 | 306 90 | 306 90 | 306 89
306 90 | 306 89
306 90 | 306 89 | 306 89 | 306 89 | 306 89 | 306 89 | | D.1d
D.1e | 295 | 296 | 297 | 298 | 299 102 | 300 86 | 301 92 | 306 90
302 94 | 306 90
303 94 | 306 90
304 99 | 306 90 | 306 90 | | D. 16
D. 1f | 300B 84 | 300B 74 | 301B102 | 302B 79 | 303B 98 | 304B 94 | 3058 68 | 306B 74 | 307B 76 | 304 99
 | 305 91
309B 84 | 306 91 | | F.la | 295 | 300B 84
296 | 300B 84
297 | 303B110
298 | 303B110 | 303B110 | 304B107 | 304B107 | 304B107 | 307B 88 | 307B 88 | 3108 58
307B 88 | | F.1b | 295 | 296 | 297 | 298
298 | 299 98
299 98 | 300 82 | 301 88 | 302 90 | 303 90 | 304 95 | 305 87 | 306 85 | | F.1c | 295 | 296 | 297 | 298 | 299 98
299 98 | 300 82
300 82 | 301 88
301 88 | 302 90 | 303 90 | 304 95 | 305 87 | 306 85 | | F.1d | 295 | 296 | 297 | 298 | 299 98 | 300 82 | 301 88
301 88 | 301 90
302 90 | | | | | | F.1e
H.60 | <u>295</u>
294 | 296
295 | 297 | 298 | 299 99 | 300 83 | 301 89 | 302 91 | 303 91 | 304 96 | 305 88 | 206 06 | | H.62 | 300B 76 | 301B107 | 296
302B 82 | 297
303B101 | 298 | 299 5 | 300 5 | 301 5 | 302 5 | 303 5 | 304 4 | 306 86
305 5 | | | | | 3023 02 | 2020101 | 304B 97 | 305B 70 | 306B 78 | 307B 80 | 308B 88 | | 310B 60 | 311B 62 | | | | | | | | | | | | | | | ^{*} See "Key" on pages 64 and following. | Key* | 1970
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | 0ct | Nov De | ≘ C | |--|--|---|--|---|--|--|---|--|--|---|---|--| | A. 1
A. 2a
A. 2b
A. 2c
A. 3a
A. 3b
A. 4
A. 5
A. 5a | 307 30
306 7
319 6
306 7
307 30
307 67
307 61
307 30
307 67 | 308 30
307 7
319 6
307 7
308 30
308 63
308 58
308 30
308 63 | 309 31
308 7
319 6
308 7
309 31
309 68
309 62
309 31
309 68 | 310 63
309 7
319 6
309 7
310 31
310 73
310 63
310 33
310 73 | 311 63
310 7
319 6
310 7
311 32
311 74
311 63
311 32
311 74 | 312 62
311 7
319 6
311 7
312 32
312 72
312 62
312 32
312 72 | 313 62
312 7
319 6
312 7
313 31
313 73
313 62
313 31
313 73 | 314 63
313 7
319 6
313 7
314 31
314 74
314 63
314 31
314 74 | 315 60
314 7
319 6
314 7
315 30
315 70
315 60
315 30
315 70 | 316 63
315 73
319 6
315 7
316 32
316 74
316 63
316 32
316 74 | 317 58
316 7
319 6
316 7
317 28
317 68
317 58
317 28
317 68 | 318 59
317 7
319 6
317 7
318 28
318 70
318 59
318 28
318 70
318 77 | | A.5b A.7b A.8aa A.8ac A.8g A.9a A.9c /.10a A.10c A.10c A.10d A.10e A.11aa A.11ab A.11e A.12aa | 307 30
306 7
306 7
306 7
307 30
307 30
307 30
306 14
306 13
306 16
306 17
306 15
307 30
311B 38
307 30 | 308 30
307 7
307 7
307 7
308 30
308 30
308 30
307 17
307 16
307 19
307 20
307 20
307 18
308 73
3128 56
308 30
3128 70 | 309 31
308 7
308 7
308 7
309 31
309 31
309 31
308 16
308 19
308 20
308 18
309 78
3138 72
309 31
3138 88
3138 88 | 310 63
309 7
309 7
309 7
310 33
310 33
310 33
309 18
309 17
309 20
309 21
309 19
310 84
3148 61
310 33
3148 76 | 311 63
310 7
310 7
310 7
311 32
311 32
311 32
310 18
310 17
310 20
310 21
310 19
311 84
3158 72
311 32 | 312 62
311 7
311 7
311 7
312 32
312 32
312 32
311 21
311 20
311 23
311 24
311 24
312 83
3168 99
312 32
3168 14
3168 14 | 313 62
312 7
312 7
312 7
313 31
313 31
313 31
312 19
312 21
312 22
312 20
313 83
3178 90
313 31
3178106 | 314 63
313 7
313 7
313 7
314 31
314 31
314 31
313 15
313 17
313 18
313 18
313 18
314 85
318 68
314 31
323B 86 | 315 60
314 7
314 7
315 30
315 30
315 30
315 30
314 18
314 17
314 20
314 21
314 21
314 21
315 81
319B 61
316B130
323B 92
323B 93 | 316 63
315 7
315 7
315 7
316 32
316 32
316 32
315 17
315 16
315 19
316 20
315 18
316 82
3208 65
316 32
323B 98 | 317 58
316 7
316 7
316 7
317 28
317 28
317 28
317 28
316 16
316 19
316 20
316 20
316 18
317 77
3218 65
317 28
3268 74 | 318 59
317 7
317 7
317 7
318 28
318 28
318 28
318 97
318 96
317 18
317 19
317 17
318 78
3228 66
318 28 | | A.12ab
A.12ba
A.12bb
A.12c
A.13a
A.13b
A.13c
B.
B.51ca
B.51cb
B.52
B.52 | 311B 55
306 21
306 22
306 18
306 19
306 20
307 96
307 97
307 98
307 100 | 307 24
307 25
307 27
307 27
307 21
307 22
307 23
308 98
308 99
308 100
308 102 | 308 23
308 24
308 26
308 21
 | 309 24
309 25
309 27
309 22
309 23
310 107
310 108
310 109
310 111 | 310 25
310 26
310 28
310 22
 | 311 27
311 28
311 30
311 25
311 26
312 106
312 107
312 108
312 110 | 312 25
312 26
312 28
312 23
312 24
313 112
313 113
313 114
313 116 | 313 21
313 22
313 24
313 19

313 20
314 112
314 113
314 114
314 115 | 314 25
314 26
314 28
314 22
314 23
315 104
315 105
315 106
315 108 | 315 23
315 24
315 26
315 21

315 22
316 104
316 105
316 108 | 316 23
316 24
316 26
317 21

316 22
317 100
317 101
317 102
317 104 | 317 23
317 24
317 25
318 20
 | | C.
C.1a
C.1ba
C.1d
C.1e
C.1f | 306 10
311B 5
306 12
311B 26
311B 19 | 307 10
312B 4
307 15
312B 34
312B 24 | 308 10
313B 5
308 15
313B 34
313B 25 | 309 10
314B 5
309 16
314B 38
314B 26 | 310 10
315B 4
310 16
315B 41
315B 29 | 311 10
3168 5
311 19
3168 52
3168 38 | 312 10
3178 5
312 18
3178 56
3178 40 | 313. 10
318B 4
313 14
318B 44
318B 30
319B 85 | 314 10
319B 4
314 16
319B 45
319B 32
320B 91 | 315 10
320B 4
315 15
320B 47
320B 36
321B 89 | 316 10
321B 4
316 15
321B 40
321B 32
322B 91 | 317 10
3228 4
317 14
322B 38
322B 30
323B 79 | | C.3
C.4aa
C.4d
C.4e
C.4f
C.4f
C.5b
C.5c
C.6 | 311B 27
307 84
307 84
307 84
307 84
307 84

313B106
307 79
307 80 | 312B 35
308 82
308 82
308 82
308 82
308 82
308 82
313B107
308 76
308 77 | 313B 35
309 87
309 87
309 87
309 87
309 87
309 87
313B 70
309 80
309 82 | 314B 39
310 93
310 93
310 93
311B 72
310 93
310 93
314B 60
310 86
310 88 | 315B 42
311 92
311 92
311 92
311 92
311 92
312B 89
315B 71
311 86
311 87 | 316B 97 | 317B 57
313 91
313 91
313 91
313 91
313
91
317B 88
313 85
313 87 | 314 93
318B 66
314 87 | 319B 46
315 87
315 87
315 87
315 87
315 87
319B 60
315 83
315 84 | | 321B 41
317 86
317 86
317 86
318B 95
317 86

321B 64
317 79
317 81 | 322B 39
318 84
318 84
318 84
318 84
318 84

323B 85
318 80
318 81 | | D.
D.1a
D.1b
D.1c
D.1d
D.1e | 307 93
318 102
318 103
307 95
311B 60
310B 68 | 318 102
318 103
308 96 | 309 102
318 102
318 103
309 104
313B 94
310B 68 | 310 104
318 102
318 103
310 106
314B 82
313B104 | 311 103
318 102
318 103
311 105
315B 94
313B104 | 312 103
318 102
318 103
312 105
316B120
313B104 | 313 108
318 102
318 103
313 110
3178112
317B122 | 318 102
318 103
314 111
318B 84 | 318 103
315 102 | 318 102
318 103
316 102
320B 81 | 317 96
318 102
318 103
317 98
3218 80
318B 94 | 318 100
318 102
318 103
318 104
3228 82
318B 94 | | F.
F.1a
F.1b
F.1c
F.1d
F.1e
H. | 307 91
307 91

307 92 | 308 92
 | | | 311 101
311 101
311 101 | 312 101
312 101
312 101 | 313 106
313 106
313 106 | 314 107
314 107
314 107 | 315 98
315 98
315 98 | 316 98
316 98
316 98 | 317 94
317 94
317 94 | | | H.60
H.62 | 306 5
312B .78 | | | | | | | | | | | | ^{*} See "Key" on pages 64 and following. | Key* | 1971
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | 0ct | Nov | Dec | |-------------------------|-------------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------| | Α. | 210 60 | 000 50 | 003 64 | | | | | | | | | | | A.1
A.2a
A.2b | 319 62
318 7 | 320 59
319 7 | 321 64
320 7 | 322 61
321 7 | 323 60
322 7 | 324 62
323 7 | 325 63
324 7 | 326 61
325 7 | 327 58
326 7 | 328 60
327 7 | 329 58
328 7 | 330 58
329 7 | | A.2c | 331 6
318 7 | 331 6
319 7
320 31 | 331 6
320 7 | 331 6
321 7 | 331 6
322 7 | 331 6
323 7 | 331 6
324 7 | 331 6
325 7 | 331 6
326 7 | 331 6
327 7 | 331 6
328 7 | 331 6
329 7 | | A.3a
A.3b
A.4 | 319 31
319 73
319 62 | 320 31
320 69
320 59 | 321 33
321 75
321 64 | 322 31
322 71
322 61 | 323 29
323 71
323 60 | 324 32
324 72
324 62 | 325 32
325 74
325 63 | 326 30
326 72
326 61 | 327 28
327 68
327 58 | 328 29
328 71
328 60 | 329 28
329 68
329 58 | 330 27
330 69 | | A.5
A.5a | 319 31
319 73 | 320 31
320 69 | 321 33
321 75 | 322 31
322 71 | 323 29
323 71 | 324 32
324 72 | 325 32
325 74 | 326 30
326 72 | 327 28
327 68 | 328 29
328 71 | 329 58
329 28
329 68 | 330 58
330 27
330 69 | | A.5b
A.7b | 319 80
319 62 | 320 75
320 59 | 321 83
321 64 | 322 79
322 61 | 323 80
323 60 | 324 80
324 62 | 325 82
325 63 | 326 79
326 61 | 327 76
327 58 | 328 78
328 60 | 329 76
329 58 | 330 76
330 58 | | A.8aa
A.8ac | 318 7
318 7 | 319 7
319 7 | 320 7
320 7 | 321 7
321 7 | 322 7
322 7 | 323 7
323 7 | 324 7
324 7 | 325 7
325 7 | 326 7
326 7 | 327 7
327 7 | 328 7
328 7 | 329 7
329 7 | | A.8g
<u>A.</u> 9a | 318 7
319 31 | 319 7
320 31 | 320 7
321 33 | 321 7
322 31 | 322 7
323 29 | 323 7
324 32 | 324 7
325 32 | 325 7
326 30 | 326 7
327 28 | 327 7
328 29 | 328 7
329 28 | 329 7
330 27 | | A.9b
A.9c | 319 31
319 31 | 320 31
320 31 | 321 33
321 33 | 322 31
322 31 | 323 29
325B 61 | 324 32
324 32 | 325 32
325 32 | 326 30
326 30 | 327 28
327 28 | 328 29
328 29 | 329 28
329 28 | 330 27
330 27 | | A.10a
A.10b | 318 15
318 14 | 319 15
319 14 | 320 16
320 15 | 321 16
321 15 | 322 15
322 14 | 323 15
323 14 | 324 18
324 17 | 325 18
325 17 | | | 333B 66 | 333B 67 | | A.10c
A.10d
A.10e | 318 17
318 18
318 16 | 319 17
319 18
319 16 | 320 18
320 19
320 17 | 321 18
321 19
321 17 | 322 17
322 18
322 16 | 323 17
323 18
323 16 | 324 20
324 21
324 19 | 325 20
325 21
325 19 | 326 15
326 16 | 327 16
327 17 | 328 15
328 16 | 329 16
329 17 | | A.11aa
A.11ab | 319 81
323B 53 | 320 76
324B 44 | 321 84
325B 33 | 322 80
326B 47 | 323 81
327B 44 | 324 81
328B 36 | 324 19
325 83
329B 60 | 325 19
326 80
330B 64 | 326 14
327 77
331B 42 | 327 15
328 79
332B 34 | 328 14
329 77
333B 39 | 329 15
330 77
334B 38 | | A.11e
A.12aa | 319 31
328B 68 | 322B 94
328B 74 | 321 33
328B 80 | 322 31
328B 86 | 323 29
328B 92 | 324 32
330B 92 | 325 32
330B 98 | 326 30
336B 98 | 327 28
336B104 | 328 29
336B110 | 333B 39
329 28
338B 64 | 330 27
338B 70 | | A.12ab
A.12ba | 328B 69
318 21 | 328B 75
319 24 | 328B 81
320 25 | 328B 87
321 24 | 328B 93
322 24 | 330B 93
323 22 | 330B 99
324 27 | 336B 99
325 27 | 366B105
326 22 | 336B111
327 23 | 338B 65
328 23 | 338B 71
329 23 | | A.12bb
A.12c | 318 22
318 23 | 319 25
319 26 | 320 26
320 27 | 321 25
321 26 | 322 25
322 26 | 323 23
323 24 | 324 28
324 29 | 325 28
325 29 | 326 23
326 24 | 329B 89
327 24 | 3298 89
328 24 | 329 24 | | A.13a
A.13c
B. | 318 19
318 20 | 319 22
319 23 | 320 23
320 24 | 321 22
321 23 | 322 22
322 23 | 323 20
323 21 | 324 25
324 26 | 325 25
325 26 | 326 20
326 21 | 327 21
327 22 | 328 21
328 22 | 329 21
329 22 | | 8.51ca
B.51cb | 319 104
319 105 | 320 96
320 97 | 321 104
321 105 | 322 100
322 101 | 323 102
323 103 | 324 100
324 101 | 325 104
325 105 | 326 100
326 101 | 327 96
327 97 | 328 98 | 329 96 | 330 98 | | B.52
B.53 | 319 106
319 108 | 320 98
320 100 | 321 106
321 108 | 322 102
324B 70 | 323 104
324B 70 | 324 102
324 104 | 325 106
325 108 | 326 102
326 104 | 327 98
327 100 | 328 99
328 100
328 102 | 329 97
329 98
330B104 | 330 99
330 100
330 102 | | C.
C.1a | 318 10 | 319 10 | 320 10 | 321 10 | 322 10 | 323 10 | 324 10 | 325 10 | 326 10 | 327 10 | 328 10 | 329 10 | | C.1ba
C.1d | 323B 4
323B 33 | 324B 5
324B 29 | 325B 5
325B 23 | 326B 4
326B 32 | 327B 4
327B 28 | 328B 4
328B 26 | 329B 4
329B 44 | 330B 4
330B 45 | 331B 4
331B 30 | 332B 4
332B 23 | 3338 4
3338 25 | 334B 5
334B 24 | | C.1e
C.1f
C.3 | 323B 25
324B 67
323B 34 | 324B 21
325B 58
324B 30 | 325B 16
326B 71 | 326B 22
327B 69 | 327B 19
328B 62 | 328B 17
329B 85 | 3296 30
3308 89 | 330B 33
331B 65 | 331B 29
332B 59 | 332B 15
333B 63 | 333B 19
334B 65 | 334B 18
335B 63 | | C.3
C.4aa | 319 88 | 324B 30
319 19
320 81 | 325B 24
320 20
321 89 | 3268 33
321 20
322 86 | 327B 29
322 19
323 87 | 328B 27
323 19
324 87 | 329B 45
324 22 | 330B 46
325 22 | 331B 31
326 17 | 332B 24
327 18 | 333B 26
328 17 | 334B 25
329 18 | | C.4b
C.4d | 319 88
319 88 | 320 81
320 81 | 321 89
321 89 | 322 86
322 86 | 323 87
323 87 | 324 87
324 87 | 325 89
325 89
325 89 | 326 86
326 86
326 86 | 327 82
327 82
327 82 | 328 84
328 84
328 84 | 329 82
329 82
329 82 | 330 82
330 82
330 82 | | C.4e
C.4f | 319 88
319 88 | 320 81
320 81 | 321 89
321 89 | 322 86
322 86 | 323 87
323 87 | 327B 73
324 87 | 325 89
325 89 | 327B 71
326 86 | 327 82
327 82 | 328 84
328 84 | 329 82
329 82 | 330 82
330 82 | | C.4g
C.5b | 323B 52 | 324B 43 | 321 89
325B 32 | 322 86
326B 46 | 323 87
327B 43 | 324 87
328B 35 | 328B 64
329B 59 | 328B 65
330B 63 | 331B 41 | 332B 33 | 333B 70
333B 38 | 333B 71
334B 37 | | C.5c
C.6
D. | 319 83
319 84 | 320 78
320 79 | 321 86
321 87 | 322 82
322 83 | 323 83
323 84 | 324 83
324 84 | 325 85
325 86 | 326 82
326 83 | 327 79
327 80 | 328 81
328 82 | 329 79
329 80 | 330 79
330 80 | | D.1a
D.1b | 319 100
330 94 | 320 92
330 94 | 321 100
330 94 | 322 96
330 94 | 323 98
330 94 | 324 96
330 94 | 325 100
330 94 | 326 96
330 94 | 327 92
330 94 | 328 94
330 94 | 329 92
330 94 | 330 92 | | D.1c
D.1d | 330 95
319 102 | 330 95
320 94 | 330 95
321 102 | 330 95
322 98 | 330 95
323 100 | 330 95
324 98 | 330 95
325 102 | 330 95
326 98 | 330 95
327 94 | 330 95
328 96 | 330 94
330 95
329 94 | 330 94
330 95
330 96 | | D.1e
D.1f | 323B 69
319 103 | 324B 58
320 95 | 325B 49
321 103 | 326B 62
322 99 | 327B 60
323 101 | 328B 51
324 99 | 329B 76
325 103 | 326 99 | 327 95 | 328 97 | 329 95 | 334B 54
330 97 | | F.
F.1a
F.1b | 319 96 | 320 90 | 321 98 | 322 94 | 323 96 | 324 94 | 325 98 | 326 94 | 327 90 | 328 92 | 329 90 | 330 90 | | F.1c
F.1d | 319 96
319 96
319 96 | 310 90
320 90
320 90 | 321 98
321 98
321 98 | 322 94
322 94
322 94 | 323 96
323 96
323 96 | 324 94
324 94 | 328B 67
325 98 | 328B 67
326 94 | 328B 67
327 90 | 328 92
328 92 | 329 90
333B 76 | 330 90
333B 76 | | F.1e
F.1f | 319 98
319 96 | 320 91
320 90 | 321 99
321 98 | 322 95
322 94 | 323 97
323 96 | 324 94
324 95
324 94 | 325 98
325 99
325 98 | 326 94
326 95
326 94 | 327 90
327 91
327 90 | 328 92
328 93
328 92 | 333B 76
329 91 | 333B 76
330 91 | | F.1g
H. | 319 96 | 320 90 | 321 98 | 322 94 | 323 96 | 324 94 | 325 98 | 326 94 |
327 90 | 328 92 | 329 90
329 90 | 330 90
330 90 | | H.60
H.62 | 318 4
324B 60 | 319 5
325B 52 | 320 5
326B 64 | 321 5
3278 62 | 322 5
328B 55 | 323 5
329B 78 | 324 5
3308 82 | 325 5
331B 58 | 326 5
332B 52 | 327 5
333B 56 | 328 5
334B 58 | 329 5
335B 56 | | | * See "K | ey" on pa | iges 64 and | followin | g. | | | | | | | | | Key* | 1972
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct . | Nov | Dec | |--|---|--|--|--|---|---|---|---|---|---|---|--| | A.
A.1
A.2a
A.2b
A.2c | 331 64
330 7
343 6
330 7 | 332 59
331 7
343 6
331 7 | 333 56
332 7
343 6
332 7 | 334 66
333 7
343 6
333 7 | 335 34
334 7
343 6
334 7 | 336 30.
335 7
343 6
335 7 | 337 40
336 7
343 6
336 7 | 338 24
337 7
343 6
337 7 | 339 28
338 7
343 6
338 7 | 340 26
339 6
343 6
339 6 | 341 22
340 7
343 6
340 7 | 342 22
341 7
343 6
341 7 | | A.3a
A.3b
A.4
A.5
A.5a | 331 33
331 75
331 64
331 33
331 75 | 332 30
332 74
332 59
332 30
332 74 | 333 25
333 72
333 56
333 25
333 72 | 334 36
334 81
334 66
334 36
334 81 | 335 34
335 96
335 34
335 34
335 96 | 336 30
336 90
336 30
336 30
336 90 | 337 40
337 102
337 40
337 40
337 102 | 338 24
338 86
338 24
338 24
338 86 | 339 28
339 88
339 28
339 28
339 88 | 340 26
340 89
340 26
340 26
340 89 | 341 22
341 82
341 22
341 22
341 82 | 342 22
342 84
342 22
342 22
342 84 | | A.5b
A.7b
A.7c
A.11ja | 331 82
331 64 | 332 81
332 59
332 59 | 333 79
333 56
333 56 | 334 88
334 66
334 66 | 335 104
335 34
335 34
335 34 | 336 97
336 30
336 30
336 30 | 337 109
337 40
337 40
337 40 | 338 93
338 24
338 24
338 24 | 339 95
339 28
339 28
339 28 | 340 98
340 26
340 26
340 26 | 341 87
341 22
341 22
341 22 | 342 89
342 22
342 22
342 22 | | A.8aa
<u>A.8ac</u>
A.8g
A.9a | 330 7
330 7
330 7
331 33 | 331 7
331 7
331 7
332 30 | 332 7
332 7
332 7
333 25 | 333 7
333 7
333 7
334 36 | 334 7
334 7
334 7
335 34 | 335 7
335 7
335 7
336 30 | 336 7
336 7
336 7
337 40 | 337 7
337 7
337 7
338 24 | 338 7
338 7
338 7
339 28 | 339 6
339 6
339 6
340 26 | 340 7
340 7
340 7
341 22 | 341 7
341 7
341 7
342 22 | | A.9b
A.9c
<u>A.10a</u>
A.10c | 331 33
331 33
333B 68
330 14 | 332 30
332 30
3338 69
331 18 | 333 25
333 25
334B 69
332 16 | 334 36
334 36
334B 70
333 14 | 335 34
335 34
334 17
334 19 | 336 30
336 30
335 15
335 17 | 337 40
338B 83
336 15
336 17 | 338 24
339B 96
337 15
937 18 | 339 28
339 28
338 15
338 17 | 340 26
340 26
340 117
339 15 | 341 22
341 22
340 13
340 15 | 342 22
342 22
341 13
341 15 | | A.10d
A.10e
A.11aa
A.11ab | 330 15
330 13
331 83
335B 39 | 331 19
331 16
332 82
3368 68 | 332 17
332 15
333 80
337B 66 | 333 15
333 13
334 89
338B 32 | 334 20
334 18
335 105
339B 62 | 335 18
335 16
336 98
340B 59 | 336 18
336 16
337 110
341B 44 | 337 19
337 16
338 94
342B 70 | 338 18
338 16
339 96
343B 34 | 339 16
339 13
340 99
344B 54 | 340 16
340 14
341 88
345B 23 | 341 16
341 14
342 90
346B 24 | | A.11e
A.12aa
A.12ab
A.12ba | 331 33
338B 78
338B 79
330 22 | 332 30
337B 98
337B 99
331 28 | 333 25
337B 82
337B 83
332 26 | 334 36
338B 47
338B 48
333 19 | 335 34
339B 78
339B 79
334 28 | 336 30
340B 74
340B 75
335 26 | 337 40
341B 60
341B 61
336 24 | 338 24
342B 86
342B 87
337 28 | 339 28
343B 49
343B 50 | 340 26
345B 56
345B 57
339 22 | 342B109
345B 38
345B 39
340 20 | 346B 40& 353B 5 | | A.12bb
A.12c
A.13a
A.13ab | 330 23
330 20 | 331 29
331 26 | 332 27
332 24 | 333 20
333 21
333 19
333 20 | 334 29
334 31
334 28
334 30 | 335 27
335 28
335 26
335 27 | 336 26
336 27
336 24
336 26 | 337 29
337 31
337 28
337 29 | 338 21

338 21 | 339 23
339 22
339 24 | 340 22
340 20
340 23 | 341 19
341 19
341 19 | | A.13c
A.17
A.18
B. | 330 20 | 331 27 | 332 25 | 333 18
333 20
333 20 | 334 27
334 30
334 29 | 335 25
335 27
335 27 | 336 26
336 26
337 132 | 337 29
337 29
338 122 | 338 21
338 21
339 116 | 339 24
339 23
340 124 | 340 23
340 22
341 104 | 341 19
341 19
342 110 | | B.51ca
B.51cb
B.52
B.53
C. | 331 106
331 107
331 108
331 110 | 332 106
332 107
332 108
332 110 | 333 104
333 105
333 106
333 108 | 334 108
334 109
334 110
334 112 | 335 130
335 131
335 132
335 134 | 336 122
336 123
336 124
336 126 | 337 132
337 133
337 134
337 136 | 338 123
338 124
338 126 | 339 117
339 118 | 340 125
340 126
340 128 | 341 105
341 106
341 108 | 342 111
342 112
342 114 | | C.la
C.lba
C.ld
C.le | 330 10
3358 5
3358 23
3358 18 | 331 10
336B 5
336B 38
336B 30 | 332 10
337B 5
337B 37
337B 28 | 333 10
338B 5
338B 22
338B 15 | 334 10
339B 5
339B 38
339B 28 | 335 10
340B 5
340B 35
340B 24 | 336 10
341B 5
341B 28
341B 21 | 337 10
342B 4
342B 34
342B 25 | 338 10
343B 4
343B 22
343B 16 | 339 9
344B 4
344B 25
344B 19 | 340 10
345B 4
345B 14
345B 11 | 341 10
346B 4
346B 14
346B 11 | | C.1f
C.3
C.3
C.3t | 336B 92
335B 24
330 16 | 337B 96
336B 39
331 20 | | | 340B 90
339B 39
334 21 | 341B 76
340B 36
335 19 | 342B105
341B 29
336 19 | 343B 65
342B 35
337 20 | 344B 79
343B 23
338 19 | 345B 55
344B 26
339 18 | 346B 55
345B 15
340 17 | 347B 51
346B 15
341 17
342 101 | | C.4aa
C.4b
C.4d
C.4e
C.4f | 331 88
331 88
331 88
331 88
331 88 | 332 88 | 333 86
333 86
336B 95 | 334 94
334 94
334 94 | 335 111
335 111
335 111
335 111
335 111 | 336 104
336 104
336 104
336 104
336 104 | 337 115
337 115
337 115
337 115
337 115 | 338 100
338 100
338 100
338 100
338 100 | 339 101
339 101
339 101
339 101
339 101 | 340 105
340 105
340 105
340 105
340 105 | 341 93
341 93
341 93
341 93
341 93 | 342 95
342 95 | | C.4g
C.5b
C.5c
C.6
D. | 335B 38
331 85
331 86 | 332 84 | 338B 82
333 82 | 334 91 | 335 111
341B 78
335 107
335 108 | 341B 79
336 100
336 101 | 341B 43
337 112
337 113 | 338 96
338 97 | 339 98
339 99 | 340·101
340·102 | 341 90
341 91 | | | D.1a
D.1b
D.1c
D.1d
D.1e | 331 102
342 106
342 107
331 104 | 342 106
342 107
332 104 | 342 106
342 107
333 102 | 342 106
342 107
334 106 | 342 106
342 107
335 128
3398 84 | 342 106
342 107
336 120
3408 80 | 337 128
342 106
342 107
337 130 | 338 118
342 106
342 107
338 120
342B 92 | 342 106
342 107
339 114 | 342 106
342 107
340 122 | 341 100
342 106
342 107
341 102
345B 44 | 342 106
342 107
342 108 | | D.1f
F. | 331 105 | | | | 335 129 | 336 121 | | 338 121 | 339 115 | 340 123 | 341 103 | | | F.1a
F.1b
F.1c
F.1d
F.1e | 331 100
331 100
331 100
331 100
331 101 | 332 100
342B111
342B111 |) 333 98
1 333 98
1 342811: | 3
3 334 102
1 342B111 | 335 124
342B111 | 336 116
336 116 | 337 126
3488 49 | 338 116
348B 49 | 339 110
348B 49 | 340 118
348B 49 | 348B 49 | 342 102
348B 49 | | F.1f
F.1g | 331 100
331 100 | 332 100 | 333 98 | 334 102 | 335 124 | 336 116 | 337 126 | 338 116
338 116 | 339 110 | 340 118 | 341 98 | 342 102 | | н.
н.60
н.62 | 330 5
336B 85
* See "Ke | 337B 90 | 3388 5 | 5 333 5
5 339B 87
following | 3408 83 | 335 5
341B 69 | | | | | | | | | | | - | _ | | | 78 | | | | | | | Marcon de | 1973
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | 0ct | Nov | Dec | |---------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|--------------------|----------------------------|--------------------|--------------------------------|--------------------|----------------------------|--------------------| | Key*
Å. | 242 80 | 244 05 | 245 00 | • | | | • | | • | | | | | A.1
A.2a | 343 22
342 7 | 344 26
343 7 | 345 30
344 7 | 346 30
345 7 | 347 24
346 7 | 348 24
347 7 | 349 26
348 7 | 350 28
349 7 | 351 26
350 7 | 352 24
351 7 | 353 26
352 7 | 354 24
353 7 | | A.2b
A.2c | 355 6
342 7 | 355 6
343 7 | 355 6
344 7 | 355 6
345 7 | 355 6
346 7 | 355 6
347 7 | 355 6
348 7 | 355 6
349 7 | 355 6
350 7 | 355 6
351 7 | 355 6
352 7 | 355 6
353 7 | | A.3a
A.3b | 343 22
343 84 | 344 26
344 82 | 345 30
345 92 | 346
30
346 90 | 347 24
347 86 | 348 24
348 84 | 349 26
349 88 | 350 28
350 90 | 351 26
351 86 | 352 24
352 86 | 353 26
353 86 | 354 24
354 86 | | A.4
A.5 | 343 22
343 22 | 344 26
344 26 | 345 30
345 30 | 346 30
346 30 | 347 24
347 24 | 348 24
348 24 | 349 26
349 26 | 350 28
350 28 | 351 26
351 26 | 352 24
352 24 | 353 26
353 26 | 354 24
354 24 | | A.5a
A.5b | 343 84
343 91 | 344 82
344 88 | 345 92
345 99 | 346 90
346 96 | 347 86
347 92 | 348 84
348 90 | 349 88
349 95 | 350 90
350 95 | 351 86
351 91 | 352 86
352 93 | 353 86
353 92 | 354 86
354 91 | | A.6
A.7b | 343 22 | 344 26 | 345 30 | 346 30 | 347 24 | 348 22
348 24 | 349 25
349 26 | 350 27
350 28 | 351 25
351 26 | 352 23
352 24 | 353 25
353 26 | 354 23
354 24 | | A.7c
A.11ja | 343 22
343 22 | 344 26
344 26 | 345 30
345 30 | 346 30
346 30 | 347 24
347 24 | 348 24
348 24 | 349 26
349 26 | 350 28
350 28 | 351 26
351 26 | 352 24
352 24 | 353 26
353 26 | 354 24
354 24 | | A.7e
A.8aa | 343 22
342 7 | 344 26
343 7 | 345 30
344 7 | 346 30
345 7 | 347 24
346 7 | 348 24
347 7 | 349 26
348 7 | 350 28
349 7 | 351 26
350 7 | 352 24
351 7 | 353 26
352 7 | 354 24
353 7 | | A.8ac
A.8g | 342 7
342 7 | 343 7
343 7 | 344 7
344 7 | 345 7
345 7 | 346 7
346 7 | 347 7
347 7 | 348 7
348 7 | 349 7
349 7 | 350 7
350 7 | · 351 7
351 7 | 352 7
352 7 | 353 7
353 7 | | A.9a
A.9b | 343 22
343 22 | 344 26
344 26 | 345 30
345 30 | 346 30
346 30 | 347 24
347 24 | 348 24
348 24 | 349 26
349 26 | 350 28
350 28 | 351 26 | 352 24 | 353 26 | 354 24 | | A.9c
A.10a
A.10c | 342 13 | 343 13 | 344 15 | 345 15 | 346 15 | 347 13 | 348 13 | 350 28
349 13 | 351 26
350 14 | 353B 54
351 13 | 353 6
352 13
353 104 | 354 24
353 13 | | A.10d
A.10e | 342 15
342 16
342 14 | 343 15
343 16
343 14 | 344 17
344 18
344 16 | 345 17
345 18 | 346 17
346 18 | 347 15
347 16 | 348 15
348 16 | 349 15
349 16 | 351 107
351 108 | 351 15
351 16 | 353 105 | 353 15
353 16 | | A.llaa | 343 92 | 344 89 | 345 100, | 345 16
346 97 | 346 16
347 93 | 347 14
348 91 | 348 14
349 96 | 349 14
350 96 | 350 <u>15</u>
351 <u>92</u> | 351 14
352 94 | 352 14
353 93 | 353 14
354 92 | | A.11ab
A.11f | 347B 26
343 22 | 348B 21
344 26 | 349B 50
345 30 | 350B 67
346 30 | 351B 61
347 24 | 352B 30
348 24 | 353B 26
349 26 | 354B 21
350 28 | 355B 37
351 26 | 356B 24
352 24 | 357B 21
353 26 | 358B 20
354 24 | | A.12aa
A.12ab | 350B102
350B102 | 353B 64
353B 64 | 353B 70
353B 70 | 353B 76
353B 76 | 353B 82
353B 82 | | | |
555 66 | |
560 43 |
 | | A.12ba
A.12bb
A.13a | 342 19
342 20
342 19 | 343 19 | 344 24 | 345 27 | 346 26
346 27 | 347 20
347 21 | 348 19 | 349 20
349 21 | 350 20
350 21 | 351 20 | 352 17
352 18 | 353 20
353 21 | | A.13ab | 342 20 | 343 19 | 344 24 | 345 27 | 346 26
346 27 | 347 20
347 21 | 348 19 | 349 20
349 21 | 350 20
350 21 | 351 20 | 352 17
352 18 | 353 20
353 21 | | A.17
A.17 | 342 19
342 20 | 343 19 | 344 24 | 345 27 | 346 27
346 27 | 347 21
347 21 | 348 19 | 349 21
349 21 | 350 21
350 21 | 351 20 | 352 18 | 353 21
353 21 | | A.17c
A.18 | 348 20
342 19 | 348 20 | 348 20 | 348 20 | 348 20
346 27 | 348 20
347 21 | 348 20 | 349 22
349 21 | 350 22
350 21 | 351 21 | 352 19 | 353 22
353 21 | | A.18
B.
B.51ca | 342 20
343 110 | 343 19
344 108 | 344 24
345 126 | 345 27 | 346 27 | 347 21 | 348 19
349 118 | 349 21 | 350 21 | 351 20 | 352 18 | 353 21 | | B.51cb
B.52 | 343 111
343 112 | 344 109
344 110 | 345 127
345 128 | 346 128
346 129
346 130 | 347 120
347 121
347 122 | 348 114
348 115 | 349 119 | 350 114
350 115 | 351 116
351 117 | 352 114
352 115 | 353 114
353 115 | 354 111 | | B.53
C. | 343 114 | 344 112 | 345 130 | 346 132 | 347 124 | 348 116
348 118 | 349 1 20
349 122 | 350 116
350 118 | 351 118
351 120 | 352 116
352 118 | 353 116
353 118 | 354 112
354 114 | | C.1a
C.1ba | 342 10
347B .4 | 343 6
348B 4 | 344 10
349B 4 | 345 10
350B 4 | 346 10
351B 4 | 347 10
352B 4 | 348 10
353B 4 | 349 10
354B 4 | 350 10
355B 4 | 351 10
356B 4 | 352 10
357B 4 | 353 10
358B 4 | | C.1d
C.1e | 347B 15
347B 14 | 348B 14
348B 12 | 349B 26
349B 20 | 350B 29
350B 28 | 351B 27
351B 21 | 352B 19
352B 14 | 353B 16
353B 11 | 354B 14
354B 10 | 355B 22
355B 16 | 356B 15
356B 12 | 357B 12
357B 9 | 358B 13
358B 10 | | C.1f
C.3 | 348B 45
347B 16 | 349B 78 | 350B 95
349B 27 | 351B 82
350B 30 | 352B 63
351B 28 | 353B 51
352B 20 | 354B 45
353B 17 | 355B 61
354B 15 | 3568 51
3558 23 | 357B 45
356B 16 | 358B 45
357B 13 | 359B 45
358B 14 | | C.3
C.3t | 342 17
344B 83 | 343 17
344 101 | 344 19
345 117 | 345 19
346 119 | 346 19
347 111 | 347 17
348 105 | 348 17
349 109 | 349 17
350 106 | 350 16
351 106 | 351 17
352 105 | 352 15
353 102 | 353 17
354 101 | | C.4aa
C.4b | 343 97
343 97 | 344 95
344 95 | 345 106
345 106 | 346 104
346 104 | 347 100
347 100 | 348 97
348 97 | 349 101
349 101 | 350 100
350 100 | 351 97
351 97 | 352 99
352 99 | 353 97
353 97 | 354 96
354 96 | | C.4d
C.4e | 343 97
343 97 | 344 95
344 95 | 345 106
345 106 | 346 104
346 104 | 347 100
347 100 | 348 97
348 97 | 349 101
349 101 | 350 100
350 100 | 351 97
351 97 | 352 99
352 99 | 353 97
353 97
353 97 | 354 96
354 96 | | C.4f
C.5c | 343 97
343 94 | 344 95
344 91 | 345 106
345 102 | 346 104
346 99 | 347 100
347 95 | 348 97
348 93 | 349 101
349 98 | 350 100
350 98 | 351 97
351 94 | 352 99
352 96 | 353 97
353 95 | 354 96
354 94 | | C.6
D. | 343 95 | 344 93 | 345 103 | 346 100 | 347 97 | 348 94 | 349 99 | 350 99 | 351 95 | 352 97 | 353 96 | 354 95 | | D.1a
D.1b | 343 106
354 106 | 344 104
354 106 | 345 120
354 106 | 346 123
354 106 | 347 114
354 106 | 348 108
354 106 | 349 112
354 106 | 350 109
354 106 | 351 111
354 106 | 352 108
354 106 | 353 108
354 106 | 354 104
354 106 | | D.1c
D.1d | 354 107
343 108 | 354 107
344 106 | 354 107
345 122 | 354 107
346 125 | 354 107
347 118 | 354 107
348 111 | 354 107
349 115 | 354 107
350 112 | 354 107
351 114 | 354 107
352 111 | 354 107
353 111 | 354 107
354 109 | | D.le
D.lf | 343 109 | 348B 35
344 107 | 349B 66
345 124 | 3508 82
346 127 | 351B 77
347 119 | 352B 51
348 113 | 349 116 | 350 113 | 351 115 | 356B
352 113 | | 354 110 | | D.1g
F. | | | | | 347 116 | 348 110 | 349 114 | 350 111 | 351 113 | 352 110 | 353 110 | 354 108 | | F.1a
F.1c | 346B 58
343 104 | 346B 58
344 102 | 346B 58
345 118 | 347B 55
346 121 | 348B 48
347 112 | 349B 81
348 106 | 349 110
349 110 | 350 107
350 107 | 351 109
352B 66 | 352 106
352 106 | 353 106
353 106 | 355B 64
354 102 | | F.1e
F.1 f | 346B 59
343 104 | 346B 60
344 102 | 346B 61
345 118 | 347B 55
346 121 | 348B 48
347 112 | 349B 81
348 106 | 349 111
349 110 | 350 108
350 107 | 351 110
351 109 | 352 107
352 106 | 353 107
353 106 | 355B 64
354 102 | | F.1g
F.1h | 343 104 | 344 102 | 345 118 | 346 121
346 121 | 347 112
347 112 | 348 106
348 106 | 349 110
349 110 | 350 107
350 107 | 351 109
351 109 | 352 106
352 106 | 353 106
353 106 | 354 102
354 102 | | F.1i
F.1j | | | | | | | | | | | | 354 102
354 102 | | н.
н.60 | 342 5 | 343 5 | 344 5 | 345 5 | 346 5 | 347 5 | 348 5 | 349 5 | 35D 5 | 351 5 | 352 5 | 353 5 | | H.62
*See | 348B 38
"Key" on p | 349B 72
age 64 and | 350B 88
followin | 351B 82 | 352B 56 | 353B 44 | 354B 38 | 355B 54 | 356B 44 | 357B 38 | 358B 38 | 359B 38 | | | | | | | | 79 | | | | | | | | Key* | 1974
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | 0ct | Nov | Dec | |--|--|--|--|---|---|---|---|---|---|---|---|--| | A.
A.1
A.2a
A.2b
A.2c
A.3a
A.3b | 355 24
354 7
367A 6
354 7
355 24
355 86 | 356 24
355 7
367A 6
355 7
356 24
356 80 | 357 26
356 7
367A 6
356 7
357 26
357 88 | 358 30
357 7
367A 6
357 7
358 30
358 90 | 359 22
358 7
367A 6
358 7
359 22
359 84 | 360 42
359 7
367A 6
359 7
360 42
360 102 | 361 30
360 7
367A 6
360 7
361 30
361 92 | 362 32
361 7
367A 6
361 7
362 32
362 94
362 32 | 363 28
362 7
367A 6
362 7
363 28
363 88
363 28 | 364 32
363
7
367A 6
363 7
364 32
364 94
364 32 | 365 26
364 7
367A 6
364 7
365 26
365 86
365 26 | 365 °4
365 7
367A 6
365 7
366 24
366 86
366 24 | | A.3c
A.4
A.5
A.5a
A.5b
A.7
A.7b
A.7c | 355 24
355 24
355 86
355 92
355 23
355 24
355 24 | 356 24
356 24
356 80
356 86
356 23
356 24
356 24 | 357 26
357 26
357 88
357 96
357 25
357 26
357 26 | 358 30
358 30
358 90
358 97
358 29
358 30
358 30 | 359 22
359 22
359 84
359 94
359 21
359 22
359 22 | 360 42
360 42
360 102
360 110
360 40
360 42
360 42 | 361 27
361 30
361 30
361 92
361 102
361 26
361 30 | 362 32
362 32
362 32
362 94
362 102
362 31
362 32 | 363 28
363 28
363 28
363 88
363 97
363 27
363 28 | 364 32
364 32
364 32
364 94
364 101
364 31
364 32 | 365 26
365 26
365 86
365 92
365 24
365 26 | 366 24
366 24
366 24
366 86
366 92
366 23
366 24 | | A.11ja
A.8aa
A.8ac
A.8g
A.9c
A.9cb | 355 24
354 7
354 7
354 7
3568 56 | 356 24
355 7
355 7
355 7
356 24 | 357 26
356 7
356 7
356 7 | 357 7
357 7
357 7 | 358 7
358 7
358 7 | 359 7
359 7
359 7 | 360 7
360 7
360 7 | 361 7
361 7
361 7 | 362 7
362 7
362 7 | 363 7
363 7
363 7 | 364 7
364 7
364 7

365 26 | 365 7
365 7
365 7

366 24 | | A.9d
A.10a
A.10c
A.10d
A.10e
A.11aa | 354 13
354 15
354 16
354 14
355 93 | 355 13
355 15
355 16
355 14
356 87 | 356 12
356 14
356 15
356 13
364B 57 | 357 14
357 16
357 17
357 17
357 15
364B 59 | 358 14
358 16
358 17
358 15 | 360 42
359 13
360B 32
360B 33
359 14 | 361 30
360 16
360 18
360 19
360 17 | 362 32
361 13
361 15
361 16
361 14 | 363 28
362 14
362 16
362 17
362 15 | 364 32
364 110
363 15
363 16
363 14 | 365 26
364 13
364 15
364 16
364 14 | 366 24
365 12
365 14
365 15
365 13 | | A.11ab
A.11e
A.11f
A.11g
A.12ba
A.12bb
A.12d | 359B 18

355 24

354 19 | 364B 44

356 24

355 19 | 365B 84

357 26

356 17
356 18 | 365B 92
358 30 | 359 22

358 23 | 360 42
 | 365B 98
361 30

360 31
360 33 | 362 32

361 18
361 19
361 20 | 363 28

362 22
362 23 | 364 32

363 22 | 365 26

364 21

364 19
364 24 | 366 24
365 18
365 17 | | A.13a
A.13ab
A.17
A.17
A.17c
A.18 | 354 19
354 19
354 19
354 20
354 19 | 355 19
355 19
355 20 | 356 17
356 18

356 18
356 19 | 357 22 | 358 23

358 23
358 25 | 359 18 | 360 31
360 31
360 31
360 32
360 31 | 361 18
361 19
361 19
361 19
361 23
361 19 | 362 22

362 26
362 22 | 363 21
363 21
363 24 | 364 19
364 19
364 27 | 365 17

365 21 | | A.18
B.
B.51ca
B.52
B.53
C. | 354 19
355 111
355 112
355 114 | 355 19
356 107
356 108
356 110 | 356 18
357 111
357 112
357 114 | 358 117
358 118
358 120 | 358 23
359 119
359 120
359 122 | 360 131
360 132
360 134 | 360 31
361 131
361 132
361 134 | 361 19
362 119
362 120
362 122 | 363 123
363 124
363 126 | 363 21
364 119
364 120
364 122 | 364 19
365 109
365 110
365 112 | 366 111
366 112
366 114 | | C.1a
C.1ba
C.1d
C.1e
C.1f
C.3
C.3
C.3 | 354 10
3598 4
3598 12
3598 9
3608 29
3598 13
354 17
355 103 | 355 10
360B 4
360B 12
360B 10
361B 22
360B 13
355 17
356 98 | 356 10
361B 4
361B 10
361B 8
362B 47
361B 11
356 16
357 103 | 357 10
3628 4
3628 23
3628 18
3638 41
3628 24
357 18
3598 51 | 358 10
3638 4
3638 18
3638 14
3648 39
3638 19
358 18
359 110 | 359 10
3648 4
3648 17
3648 13
3658 81
3648 18
359 15
360 122 | 360 10
365B 4
365B 26
365B 20
366B 29
365B 27
360 20
361 122 | 361 10
3668 4
3668 14
3668 13
3678 52
3668 15
361 17
362 111 | 362 10
2678 4
3678 20
3678 16
3588 56
3678 21
362 18
263 115 | 363 10
3688 4
3688 24
3688 20
3698 34
3688 25
363 17
3658105 | 364 10
3698 4
3698 14
3698 11
3708 26
3698 15
364 17
365 101 | 365 10
3708 4
3708 11
3708 8
3718 22
3708 12
365 16
366 100 | | C.4aa
C.4b
C.4d
C.4e
C.4f
C.4h
C.41 | 355 98
355 98
355 98
355 98
355 98
 | 356 91
356 91
356 91
356 91
356 91
356 91 | 357 99
357 99
357 99
357 99
357 99
357 99
357 99 | 358 102
358 102
359B 48
358 102
358 102
358 102 | 359 98
359 98
359 98
359 98
359 98 | 361B 24
360 113
360 113
360 113
360 113
360 113 | 361 106
361 106
361 106
361 106
361 106
361 106
361 106 | 362 104
362 104
362 104
362 104
362 104
362 104
362 104 | 363 101
363 101
363 101
363 101
363 101

363 101 | 364 104
364 104
365B103
364 104
364 104

364 104 | 365 94
365 94
365 94
365 94
365 94
365 94
365 94 | 366 94
366 94
366 94
366 94
366 94
366 94 | | C.4j
C.5c
C.5e
C.6 | 355 95
355 96 | 356 89
356 90 | 357 97 | 358 102
3648 61

358 98 | 359 95 | 360 113

360 111 | 261 106

361 103 | 362 104

362 103 | 363 101

363 99 | 364 104

364 102 | 265 94

364 23
365 93 | 366 94

365 18
366 93 | | D.1a
D.1ba
D.1c
D.1d
<u>D.1e</u>
D.1f | 355 106
355 107
366 107
355 109
359B 34
355 110 | 356 102
356 103
366 107
356 105

356 106 | 357 106
357 107
366 107
357 109
362B 48
357 110 | 358 112
358 113
366 107
358 115
363B 42
358 116 | 359 114
359 115
366 107
359 113 | 360 126
360 127
366 107
360 129 | 361 126
361 127
366 107
361 129
365B 70
361 130 | 362 114
362 115
366 107
362 117
362 118 | 363 118
363 119
366 107
363 121
3678 40
363 122 | 364 113
364 114
366 107
364 116
3670 44
364 118 | 365 104
365 104
366 107
365 107

365 108 | 366 103
366 105
366 107
366 109 | | D.1g
F.
F.1a | 355 108
356B 54 | 356 104
357B 48 | 357 108
357 104 | 358 114
358 110 | 359 116
359 112 | 360 128
360 124 | 361 128
361 124 | 362 116
362 112 | 363 120
364B 42 | 364 115
364 111 | 365 106
365 102 | 366 108
366 101 | | F.1b
F.1c
F.1e
F.1f
F.1g | 355 104
356B 54
355 104
355 104 | 356 100
357B 48
356 100
356 100 | 357 104
357 104
357 104
357 104 | 358 110
358 110
358 110 | 359 112
359 112
359 112 | 360 124
360 124
360 124 | 361 124
361 124
361 124
361 124 | 362 112
362 112
362 112 | 364B 42
363 116
363 116 | 364 111
364 111
364 111 | 365 102
3668 32
3668 32 | 366 101
365 101
366 101
366 101 | | F.1h
F.1i
F.1j | 355 104
355 104
355 104
355 104 | 356 100
356 100
356 100
356 100 | 357 104
357 104
357 104
357 104 | 358 110
358 110
358 110
358 110 | 359 112
359 112
359 112
359 112 | 360 124
360 124
360 124
360 124 | 361 124
361 124
361 124
361 124 | 363B 47
362 112
362 112 | 363 116
363 116
363 116
363 116 | 364 111
364 111
364 111 | 365 102
365 102
365 102 | 366 101
366 101
366 101 | | н.
Н.60
Н.62 | 354 4
360B 22 | 355 4
361B 16 | 356 4
362B 40 | 357 4
363B 34 | 358 4
364B 32 | 359 4
365B 74 | 360 4
3668 22 | 361 4
3678 44 | 362 4
368B 48 | 363 4
369B 25 | 364 4
370B 17 | 365 4
371B 13 | ^{*} See "Key" on pages 64 and following. | INDEX | TO | "SOL | AR-GEOP | HYSICAL | DATA" | |-------|----|------|---------|---------|-------| |-------|----|------|---------|---------|-------| | Қоу » | 1975 | Cob | Ман | _ | | JLAK-GEOPI | Jul | _ | Con | Oct | Nov | Dec | |----------------------|--------------------|--------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------| | A. | Jan | Feb | Mar | Apr | May | Jun | | Aug | Sep | | 1404 | Dec | | A.1
A.2a | 367A 24
366A 7 | 368A 26
367A 7 | 369A 26
368A 7
378A 6 | 370A 24
369A 7
378A 6 | 371A 24
370A 7
378A 6 | 372A 28
371A 7
378A 6 | 373A 34
372A 7
378A 6 | 374A 28
373A 7
378A 6 | 375A 24
374A 7
378A 6 | 376A 28
375A 7
378A 6 | 377A 26
376A 7
378A 6 | 378A 28
377A 7
378A 6 | | A.2b
A.2c | 378A 6
366A 7 | 378A 6
367A 7 | 368A 7 | 369A 7 | 370A 7 | 371A 7 | 372A 7 | 373A 7 | 374A 7 | 375A 7 | 376A 7 | 377A 7 | | A.3a
A.3b | 367A 24
367A 86 | 368A 26
368A 82 | 369A 26
369A 88 | 370A 24
370A 84 | 371A 24
371A 86 | 372A 28
372A 88 | 374A 34
373A 96 | 374A 28
374A 90 | 375A 24
375A 84 | 376A 28
376A 90 | 377A 26
377A 86 | 378A 28
378A 90 | | A.3c | 367A 24 | 368A 26 | 369A 26 | 370A 24 | 371A 24
371A 24 | 372A 28 | 373A 34
373A 34 | 374A 28 | 375A 24
375A 24 | 376A 28
376A 28 | 377A 26
377A 26 | 378A 28
378A 28 | | A.4
A.5 | 367A 24
367A 24 | 368A 26
368A 26 | 369A 26
369A 26 | 370A 24
370A 24 | 371A 24 | 372A 28
372A 28 | 373A 34 | 374A 28
374A 28 | 375A 24 | 376A 28 | 377A 26 | 378A 28 | | A.5a
A.5b | 367A 86
367A 93
 368A 82
368A 89 | 369A 88
369A 93 | 370A 84
370A 91 | 371A 86
371A 92 | 372A 88
372A 93 | 373A 96
373A101 | 374A 90
374A 95 | 375A 84
375A 90 | 376A 90
376A 96 | 377A 86
377A 92 | 378A 90
378A 94 | | A.6 | 367A 23
367A 24 | 368A 25
368A 26 | 369A 25
369A 26 | 370A 23
370A 24 | 371A 23
371A 24 | 372A 27
372A 28 | 373A 33
373A 34 | 374A 26
374A 28 | 375A 23
375A 24 | 376A 27
376A 28 | 377A 25
377A 26 | 378A 27
378A 28 | | A.7b
A.8aa | 366A 7 | 367A 7 | 368A 7 | 369A 7 | 370A 7 | 371A 7 | 372A 7 | 373A 7 | 374A 7 | 375A 7 | 376A 7 | 377A 7 | | A.8ac
A.8g | 366A 7
366A 7 | 367A 7
367A 7 | 368A 7
368A 7 | 369A 7
369A 7 | 370A 7
370A 7 | 371A 7
371A 7 | 372A 7
372A 7 | 373A 7
373A 7 | 374A 7
374A 7 | 375A 7
375A 7 | 376A 7
376A 7 | 377A 7
377A 7 | | A.9cb | 367A 24
367A 24 | 368A 26
368A 26 | 369A 26
369A 26 | 370A 24
370A 24 | 371A 24
371A 24 | 372A 28
372A 28 | 373A 34
373A 34 | 374A 28
374A 28 | 375A 24
375A 24 | 376A 28
376A 28 | 377A 26
377A 26 | 378A 28
378A 28 | | A.9d
A.10a | 366A 12 | 367A 12 | 369A101 | 369A 12 | 370A 12 | 371A 12 | 372A 15 | 373A 15 | 374A 12 | 375A 12 | 376A 14 | 377A 12 | | A.10c
A.10d | 366A 14
366A 15 | 367A 14
367A 15 | 368A 14
368A 15 | 369A 14
369A 15 | 371A100
371A101 | 371A 14
371A 15 | 372A 17
372A 18 | 373A 17
373A 18 | 374A 14
374A 15 | 375A 14
375A 15 | 376A 16
376A 17 | 378B 57
378B 58 | | A.10e
A.11e | 366A 13
368B 58 | 367A 13
369B 36 | 368A 13
369A 26 | 369A 13
371B 24 | 370A 13
371A 24 | 371A 13
373A 34 | 372A ; 16 | 373A 16 | 374A 13 | 375A 13 | 376A 15 | 377A 13 | | A. 11g | 366A 18 | 367A 18 | 368A 18 | 369A 20 | 370A 18 | | ^ | 373A 25 | 374A 20 | 375A 18 | 376A 21 | 377A 19 | | A.11h ı
A.12a › | | | | 369A 18 | 370A 16 | 371A 18 | | 374A 28 | 375A 24
374A 18 | 376A 28 | 377A 26 | 378A 28
377A 18 | | A. 12bb
A. 13a | | | | 369A 19
369A 18 | 370A 17
370A 16 | 371A 19
371A 18 | | | 374A 19
374A 18 | | | 377A 18 | | A.13ab | | | | 369A 19 | 370A 17 | 371A 19 | 372A 22 | | 374A 19 | | | | | A.13d
A.17 | 366A 17 | 367A 17 | 368A 17 | 369A 17
369A 19 | 370A 15
370A 17 | 371A 17
371A 19 | 372A 21 | 373A 24 | 374A 17
374A 19 | 375A 17 | 376A 20 | 377A 17
 | | A.17 | 366A 20 | 367A 20 | 368A 21 | 369A 19
369A 22 | 370A 20 | 371A 19
371A 20 | 372A 22
372A 24 | 373A 29 | 374A 19
374A 23 | 375A 20 | 376A 24 | 377A 21 | | A.17c
A.18 | | 30/A 20 | | 369Å 19 | 370A 17 | 371A 19 | | | 374A 19 | | | | | A.18
B. | | | | 369A 19 | | 371A 19 | 372A 24 | | 374A 19 | | | | | B.51ca
B.52 | 367A111
367A112 | 368A103
368A104 | 369A109
369A110 | 370A105
370A106 | 371A108
371A109 | 372A109
372A110 | 373A119
373A120 | 374A115
374A116 | 375A103
375A104 | 376A113
376A114 | 377A111
377A112 | 378A114
378A115 | | B.53 | 367A114 | 368A106 | 369A112 | 370A108 | 371A111 | 372A112 | 373A122 | 374A118 | 375A106 | 376A116 | 377A114 | 378A117 | | C.
C.la | 366A 10 | 367A 10 | 368A 10
375B 35 | 369A 10
375B 39 | 370A 10
375B 6 | 371A 10
376B 4 | 372A 10
377B 4 | 373A 10
378B 4 | 374A 10
379B 4 | 375A 10
380B 4 | 376A 10
381B 4 | 377A 10
382B 4 | | <u>C.1ba</u>
C.1d | 375B 26
366A 11 | 3758 30
367A 11 | 368A 11 | 369A 11 | 370A 11 | 371A 11 | 372A 14 | 373A 14 | 374A 11 | 375A 11 | 376A 13 | 377A 11 | | C.1d
C.1e | 371B 6
371B 5 | 372B 6
372B 5 | 373B 6
375B 41 | 374B 5
375B 41 | 375B 10
375B 9 | 376B 9
376B 8 | 377B 15
377B 14 | 378B 25
378B 24 | 379B 8
379B 7 | 380B 7
380B 6 | 3818 13
381B 12 | 382B 8
382B 7 | | C.1f
C.3 | 372B 20
371B 7 | 375B 41
372B 7 | 375B 41
373B 7 | 375B 24
374B 6 | 376B 22
375B 11 | 377B 32
376B 10 | 378B 52
377B 16 | 379B 22
378B 26 | 380B 20
379B 9 | 381B 36
380B 8 | 382B 26
381B 14 | 383B 32
382B 9 | | C.3 | 366A 16 | 367A 16 | 368A 16 | 369A 16 | 370A 14 | 371A 16 | 372A 19 | 373A 19 | 374A 16 | 375A 16 | 376A 18 | 377A 16
378A101 | | C.3t
C.4a | 367A103
367A 96 | 368A 95
368A 91 | 369A100
369A 95 | 370A 97
370A 93 | 371A 99
371A 94 | 372A101
372A 95 | 363A111
373A103 | 374A107
374A 99 | 376B 26
375A 92 | 376A105
376A 98 | 377A102
377A 94 | 378A 96 | | C.4b
C.4d | 367A 96
367A 96 | 368A 91
368A 91 | 369A 95
369A 95 | 370A 93
370A 93 | 371A 94
371A 94 | 372A 95
372A 95 | 373A103
374B 19 | 374A 99
378B 54 | 375A 92
376B 24 | 376A 98
376A 98 | 377A 94
377A 94 | 378A 96
378A 96 | | C.4e | 367A 96 | 368A 91 | 369A 95 | 370A 93 | 371A 94 | 372A 95 | 373A103 | 374A 99 | 375A 92
375A 92 | 376A 98
376A 98 | 377A 94
377A 94 | 378A 96
378A 96 | | C.4f
C.4h | 367A 96
367A 96 | 368A 91
368A 91 | 369A 95
369A 95 | 370A 93 | 371A 94 | 372A 95
372A 95 | 373A103
373A103 | 374A 99 | | 376A 98 | | | | C.4i
C.4j | 367A 96
367A 96 | 368A 91
368A 91 | 369A 95
369A 95 | 370A 93
370A 93 | 371A 94
371A 94 | 372A 95
372A 95 | 373A103
373A103 | 374A 99
374A 99 | 375A 92
375A 92 | 376A 98
376A 98 | 377A 94
377A 94 | 378A 96
378A 96 | | C.5e | 366A 18 | 367A 18 | 368A 18 | 369A 20
370A 92 | 370A 18
371A 93 | 372A 94 | 372A 23
373A102 | 373A 27
374A 96 | 374A 22
375A 91 | 375A 18
376A 97 | 376A 23
377A 93 | 377A 23
378A 95 | | C.6
D. | 367A 95 | | 369A 94 | ···· | | | • | | | | | | | D.la
D.1ba | 367A106
367A107 | 368A 98
368A 99 | 369A104
369A105 | 370A100
370A101 | 371A104
371A105 | 372A104
372A105 | 373A114
373A115 | 374A111 | 374A 98
374A 99 | 376A108
376A109 | 377A105
377A106 | 378A105
378A107 | | D.1c
D.1d | 378A108
367A109 | 378A108 | 378A108
369A107 | 378A108
370A103 | 378A108
371A106 | 378A108
372A107 | 378A108
373A117 | | 378A108
374A101 | 378A108
376A111 | | 378A108
378A112 | | D.1e | | | 373B 10 | | | | | | | 376A111
381B 47
376A112 | 377A108
382B 40
377A110 | 378A113 | | D.1f
D.1g | 367A110
367A108 | | 369A108
369A106 | 370A104
370A102 | 371A107
372B 24 | 372A108
372A106 | 373A118
373A116 | 374A114
374A112 | 374A102
374A100 | 376A112
376A110 | | 378A111 | | F.
F.1a | 367A104 | 368A 96 | 369A102 | 370A 98 | 371A102 | 372A102 | | | 375A 96 | 3778 34 | | 378A104 | | F.1b
F.1e | 367A104
367A104 | 368A 96 | 369A102
369A102 | 370A 98
370A 98 | 371A102
371A102 | 372A102
372A102 | | | 375A 96
375A 96 | 376A106
377B 34 | | 378A104
378A104 | | F.1f | 367A104 | 368A 96 | 369A102 | 370A 98 | 371A102 | 372A102 | 374B 22 | 374A108 | | 376A106
376A106 | 377A103 | 378A104 | | F.1g
F.1h | 367A104
367A104 | 368A 96 | 369A102
369A102 | | 371A102
371A102 | 372A102 | 373A112 | 374A108 | 375A 96 | 376A106 | 377A103 | 378A104 | | F.1i
F.1j | 367A104
367A104 | 368A 96 | 370A102 | 370A 98 | 371A102
371A102 | | 373A112
373A112 | | | | | | | H. 60 | | | | | 370A 5 | | | | | | | | | H. 62 | 366A 4
372B 11 | | 374B 8 | 375B 16 | 376B 14 | ^{*} See "Key" on pages 64 and following. | | 1976 | | | 1 1/1 | EX TO "SO | JLAR-GEOPF | IYSICAL D | ATA" | | | | • | |---|---|---|--|--|---|--|---|---|---|---|---|---| | Key* | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct · | Nov | Dec | | A. 1
A. 2a
A. 2b
A. 2c
A. 3a
A. 3b
A. 3c
A. 3d
A. 4
A. 5 | 379A 26
378A 7
391A 6
378A 7
379A 26
379A 88
379A 26
390A 21
379A 26
379A 26 | 380A 36
379A 7
391A 6
379A 7
380A 36
380A 94
380A 36
390À 21
380A 36
380A 36 | 381A 30
380A 7
391A 6
380A 7
381A 30
381A 92
381A 30
390A 21
381A 30
381A 30 | 382A 26
381A 7
391A 6
381A 7
382A 26
382A 86

390A 21
382A 26
382A 26 | 383A 26
382A 7
391A 6
382A 7
383A 26
383A 88

390A 21
383A 26
383A 26 | 384A 24
383A 7
391A 6
383A 7
383A 24
384A 84

390A 21
384A 24
384A 24 | 385A 26
384A 7
391A 6
384A 7
385A 26
385A 88

390A 21
385A 26
385A 26 | 386A 22
385A 7
391A 6
385A 7
386A 22
386A 84
386A 22
390A 21
386A 22
386A 22 | 387A 26
386A 7
391A 6
386A 7
387A 26
387A 86
387A 26
390A 21
387A 26
387A 26 | 388A 26
387A 7
391A 6
387A 7
388A 26
388A
88
388A 26
390A 21
388A 26
388A 26 | 389A 26
388A 7
391A 6
388A 7
389A 26
389A 26
389A 26
390A 21
389A 26
389A 26 | 390A 28
389A 7
391A 6
389A 7
390A 28
390A 90
390A 28
390A 21
390A 28
390A 28 | | A.5a
A.5b
A.6
A.7b
A.7f
A.8aa
A.8ac
A.8g
A.9cb | 379A 88
379A 93
379A 25

379A 26
378A 23
378A 7
378A 7
378A 7
379A 26
379A 26 | 380A 94
380A100
380A 33

380A 36
379A 21
379A 7
379A 7
379A 7
380A 36
380A 36 | 381A 92
381A 97
381A 29

381A 30
380A 7
380A 7
380A 7
380A 7
381A 30
381A 30 | 382A 86
382A 91
382A 25
386B 4
382A 26
381A 24
381A 7
381A 7
381A 7
382A 26
382A 26 | 383A 88
383A 94
383A 25
387B 4
383A 26
382A 21
382A 7
382A 7
382A 7
382A 7
383A 26
383A 26 | 384A 84
384A 90
384A 23
388B 4
384A 24
383A 7
383A 7
383A 7
383A 7
384A 24 | 385A 88
385A 93
385A 24
389B 4
385A 26
384A 19
384A 7
384A 7
384A 7
385A 26
385A 26 | 386A 84
386A 20
390B 4
386A 22
385A 7
385A 7
385A 7
385A 7
386A 22
386A 22 | 387A 86
387A 26
391B 4
387A 26

386A 7
386A 7
386A 7
386A 7
387A 26
387A 26 | 388A 88
388A 94
388A 26
392B 4
388A 26
387A 20
387A 7
387A 7
387A 7
388A 26
388A 26 | 389A 86
389A 90
389A 26
393B 4
389A 26
388A 21
388A 7
388A 7
388A 7
389A 26
389A 26 | 390A 90
390A 95
390A 26
394B 4
390A 28
389A 21
389A 7
389A 7
389A 7
390A 28
390A 28 | | A.10a
A.10c
A.10d
A.10e
A.11g
A.11h
A.11i
A.11jb | 378A 13
378A 15
378A 16
378A 14
378A 20
379A 26 | 379A 12
379A 14
379A 15
379A 13
379A 19
380A 36 | 380A 15
380A 17
380A 18
380A 16
380A 26
381A 30 | 381A 13
381A 15
381A 16
381A 14
381A 21
382A 26
382A 26 | 382A 12
382A 14
382A 15
382A 13
382A 18
383A 26 | 383A 13
383A 15
383A 16
383A 14
383A 19
384A 24 | 384A 12
384A 14
384A 15
384A 13
384A 17
385A 26 | 385A 14
385A 15
385A 13
385A 18
386A 22
386A 22 | 386A 12
387A101
387A102
386A 13
386A 16
387A 26
391B 25
387A 26 | 387A 12
388A101
388A102
387A 13
387A 18
388A 26 | 388A 12
388A 14
388A 15
388A 13
388A 19
389A 26 | 389A 12
389A 14
389A 15
389A 13
389A 18
390A 28 | | A.12ba
A.12bb
A.12e
A.13a
A.13ab
A.13d | 383B 17
378A 19 | 384B 10
379A 18 | 385B 16 | 386B 20

381A 20 | 3878 16

382A 17 | 3888 15

383A 18 | 389B 12 | 3908 23 | 386A 15
391B 20
386A 15 | 387A 16
387A 17
392B 18
387A 16
387A 17
387A 15 | 388A 18
393B 15
388A 18
388A 17 | 394B 17

389A 17 | | A.13e
A.17
A.17
A.17c
A.18
A.18 | 383B 16

378A 24
 | 384B 9

379A 22
 | 385B 15

380A 31 | 387B 36

381A 25 | 387B 15

382A 22 | 388B 14

383A 22 | 389B 11

384A 20 | 390B 22

385A 22 | 3918 19

386A 18
 | 3928 19

387A 17
387A 21

387A 17 | 3938 15

388A 22 | 394B 17

389A 22
 | | B.
B.51ca
B.52
B.53 | 379A115
379A116
379A118 | 380A119
380A120
380A122 | 381A126
381A127
381A129 | 382A113
382A114
382A116 | 383A118
383A120
383A119 | 384A108
384A110
384A109 | 385A113
385A114
385A116 | 386A111
386A112
386A114 | 387A115
387A116
387A118 | 388A116
388A118 | 389A110
389A109 | 390A116
390A118 | | C. 1a
C.1ba
C.1d
C.1d
C.1e
C.1f
C.3 | 378A 10
383B 4
378A 12
383B 10
383B 9
384B 24
383B 11
378A 17
379A 95 | 379A 10
384B 4
379A 11
384B 7
384B 6
385B 56
384B 8
379A 16
380A106
380A102
380A102 | 3858 15
380A 19
381A114
381A100 | 381A 10
386B 7
381A 12
386B 12
386B 11
387B 30
386B 13
381A 17
383B 37
382A 93
382A 93 | 382A 10
387B 6
382A 11
387B 10
387B 9
388B 30
387B 11
382A 16
383A103
383A 96
383A 96 | 383A 10
388B 6
383A 12
388B 11
388B 10
389B 26
388B 12
383A 17
385B 67
384A 92
384A 92 | 384A 10
389B 6
384A 11
389B 9
389B 8
390B 39
389B 10
384A 16
385A100
385A 95 | | 386A 10
391B 8
386A 11
391B 13
391B 12
392B 35
391B 14
386A 14
390B 43
387A 95 | 387A 10
392B 8
387A 11
392B 13
392B 12
393B 31
392B 14
387A 14
390B 44
388A 96 | 388A 10
393B 8
388A 11
393B 12
393B 11
394B 33
393B 13
388A 16
391B 45
389A 92 | 389A 10
394B 8
389A 11
394B 13
394B 12
395B 33
394B 14
389A 16
391B 46
390A 97 | | C.4b
C.4d
C.4f
C.4h
C.4i
C.5e
C.5f
C.5f | 379A 95
379A 95
379A 95
379A 95
379A 95
379A 95
379A 95
378A 22 | 380A102
380A102
381B 45

380A102
381B 45 | 381A100
381A100
381A100
381A100
381A100 | 383B 34
382A 93
382A 93
382A 93
382A 93
382A 93
381A 23 | 383A 96
383A 96
383A 96
383A 96
383A 96
383A 96
382A 20 | 3858 58
384A 92
384A 92
384A 92
384A 92
384A 92 | 385A 95
385A 95
385A 95
385A 95
385A 95 | 3878 32
386A 91
386A 91
386A 91
386A 91
386A 91
385A 20 | | 389B 32
388A 96
388A 96
388A 96
388A 96
388A 96 | 389A 92
389A 92
389A 92
389A 92
389A 92
389A 92 | 391B 47
390A 97
390A 97
390A 97
390A 97
390A 97
389A 20 | | D.
D.1a
D.15a | 379A 94
379A108
379A109
390A110
379A113 | 380A101
380A112
380A114
390A110
380A117 | 381A119
381A121
390A110 | | 383A 95
383A111
383A113
390A110
383A116 | 384A106 | 385A 94
385A106
385A108
390A110
385A111 | 386A104
386A106
390A110 | 387A108
387A110 | | 389A 91
389A102
389A104
390A110
389A107 | 390A 96
390A107
390A109
390A110
390A114 | | 0.1c
D.1d
D.1e
D.1f
D.1g | 379A114
379A112 | 380A118
380A116 | | | 383A117
383A115 | 384A107
384A105 | 385A112
385A110 | | 387A114
387A112 | 388A114
388A112 | 389A108
389A106 | 390A115
390A113 | | F. 1a F.1b F.1e F.1f F.1g F.1h F.1i F.1j | 379A103
379A103
379A103
380B 28
380B 28
379A103
379A103
379A103 | 380A107
380A107
381B 44
381B 44
380A107
380A107 | 381A118
381A118
381A118
381A118
381A118
381A118 | 382A101
382A101
382A101
382A101
383B 38
382A101 | | 384A 96
384A 96
384A 96
384A 96

384A 96 | 385A101
385A101
385A101
385A101
385A101

385A101
385A101 | 386A 99
386A 99
386A 99
386A 99

386A 99 | 387A103
387A103
387A103
387A103

387A103 | 388A103
388A103
388A103
388A103

388A103 | 389A 97
389A 97
389A 97
389A 97
389A 97
389A 97
389A 97 | 390A106
390A106
390A106
390A106
390A106
390A106
390A106 | | Н.
Н.60
Н.62 | 378A 5
384B 17 | | | | | | 384A 5
390B 32 | | | | 388A 5
394B 26 | 389A 4
395B 26 | ^{*} See "Key" on pages 64 and following. | | 1977 | | | IND | X TO "SOLA | R-GEOPHYSI | CAL DATA" | | | | | | |--|--|---|--|--
---|---|---|--|--|--|--|--| | Key* | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | | A.1
A.2a
A.2b
A.2c
A.3d
A.3d
A.5
A.56
A.7f
A.7h
A.8ac
A.9cd
A.10c
A.10c
A.10d
A.10d
A.10d
A.10d | 391A 34
390A 7
404A 8
390A 7
391A 34
391A
34
391A 34
391A 34
391A 32
391A 32
391A 32
391A 32
391A 32
391A 32
391A 34
390A 7
390A 7
390A 7
390A 7
390A 7
390A 34
391A 34
391A 34
391A 34
391A 34
391A 34
391A 34
391A 34 | 392A 28
391A 7
404A 8
391A 7
392A 28
392A 28
392A 28
392A 28
392A 28
392A 28
392A 26
392A 26
392A 26
391A 29
391A 23
391A 7
391A 7
391A 7
391A 7
391A 7
391A 7
391A 7
391A 15
391A 15
391A 16 | 393A 34
392A 7
404A 8
392A 7
393A 34
393A 96
393A 34
393A 34
393A 34
393A 34
393A 34
393A 34
393A 34
393A 34
392A 7
392A 7
392A 7
392A 7
392A 7
392A 7
392A 3
392A 3
392A 19 | 394A 32
393A 7
494A 8
393A 7
394A 32
394A 32
394A 32
394A 32
394A 32
394A 30
394A 31
393A 7
393A 7
393A 7
393A 15
393A 15
393A 14 | 395A 36
394A 7
404A 8
395A 36
395A 36
30
30
30
30
30
30
30
30
30
30
30
30
30 | 395A 35
395A 37
404A 8
395A 34
396A 34
396A 34
395A 35
396A 35
396A 35
396A 34
395A 32
400B 4
395A 34
395A 34
395A 35
396A 34
395A 35
396A 35
396A 34
395A 35
396A 35
396A 31
395A 35
396A 35
396A 35 | 397A 32
396A 7
404A 3
396A 7
397A 32
397A 32
397A 32
397A 32
397A 32
397A 10
397A 30
401B 4
396A 22
397A 32
397A 32
397A 32
397A 32
396A 7
396A 7
396A 7
396A 7
396A 7
396A 12
396A 12 | 398A 36
397A 7
404A 8
397A 7
398A 36
398A 36
398A 36
398A 36
398A 36
398A 36
398A 36
398A 36
398A 36
397A 7
397A 7
397A 7
397A 7
397A 7
397A 15
397A 15
397A 16
397A 14 | 399A 34
398A 7
404A 8
398A 34
399A 34
399A 34
399A 34
399A 34
399A 34
399A 34
399A 32
403B 4
399A 32
403B 4
399A 37
399A 37
400B 57
400B 57
40 | 400A 30
399A 7
404A 8
399A 7
400A 30
400A 30
400A 30
400A 30
400A 30
400A 22
400A 28
400A 28
400A 30
399A 24
400A 30
399A 7
399A 7
400A 30
399A 7
400A 30
399A 7
399A 7
400A 30
400A 3 | 401A 36
400A 7
404A 8
400A 36
401A 36
401A 36
401A 36
401A 36
401A 36
401A 36
401A 36
400A 21
400A 20
401A 36
400A 7
400A 7
400A 7
400A 7
400A 7
400A 36
400A 13
400A 12
400A 13 | 402A 38
401A 7
404A 8
401A 7
402A 38
402A100
402A 38
401A 31
401A 38
402A 38
402A100
402A105
402A 36
406B 6
401A 27
401A 27
401A 7
401A 7
401A 7
401A 7
401A 15
401A 15
401A 15
401A 15
401A 16
403B 68 | | A.11g
A.11h
A.12ba
A.12bb
A.12e
A.13ab
A.13ab
A.13d
A.13d
A.17
A.17
A.17 | 390 A 15
391 A 34
402 B 51

395 B 17

390 A 24
395 B 17

390 A 20
 | 391A 19
392A 28
402B 54
391A 25
391A 27
396B 20
391A 27
391A 24
396B 19

391A 28
391A 28 | 392A 15
393A 34
402B 57

397B 15

392A 23
397B 15

392A 20
 | 393A 20
394A 32
402B 60
393A 26
393A 26
393A 24
393A 27
393A 27
393B 21

393A 28 | 394A 18
395A 36
402B 23
394A 24
399B 18
394A 24
394A 25
394A 25
399B 17

394A 26 | 395A 21
396A 34
402B 66
395A 27
400B 34
395A 27
395A 27
395A 31
400B 33
395A 27
395A 27 | 396A 17
397A 32
396A 24
396A 25
401B 20
396A 25
396A 27
401B 19
396A 25
396A 25
396A 25
396A 28
396A 28 | 398A 36
397A 23
402B 24
397A 23
397A 27
402B 23 | 398A 25
399A 34

403B 37

398A 27
403B 22

398A 28
 | 399A 20
400A 30
399A 26
399A 27
404B 35
399A 27
399A 25
404B 34

400A 22
399A 27 | 400A 17
401A 36

405B 22

400A 25
400A 25
400A 22
 | 401A 22
402A 38

406B 43

401A 29
408B 82

401A 30 | | B.
B.52
B.53 | 391A118
391A120 | 392A104
392A103 | 393A122
393A121 | 394A118
394A120 | 395A122
395A124 | 396A118
396A120 | 397A120
397A122 | 398A124
398A126 | 399A128
399A127 | 400A120
400A122 | 401A116
401A118 | 402A132
402A131 | | C.1 a a a C.1 d C.1 d C.1 f C.3 t C.4 d C.4 f C.4 f C.4 f C.5 f C.5 f | 390A 10
395B 8
390A 11
395B 13
395B 12
396B 35
395B 14
390A 14
391A103
391A103
391A103
391A103
391A103
391A103
391A103
391A103
391A103 | 391A 21
402B 54 | 393A102
393A102
393A102
392A 17
402B 57 | 393A 10
398B 8
393A 12
398B 14
398B 13
399B 33
399B 15
393A 17
394A 98
394A 98
394A 98
394A 98
394A 98
394A 98
394A 98
394A 98 | 394A 10
399B 8
394A 11
399B 13
399B 12
400B 49
399B 14
394A 16
395A106
395A106
395A106
395A106
395A106
395A106
395A106 | 395A 10
400B 8
395A 13
400B 19
400B 18
401B 35
400B 20
395A 18
398B 44
396A102
397B 34
397B 34
397B 34
396A102
396A102
396A102
396A102
396A102
396A102 | 396A 10
401B 8
396A 11
401B 15
401B 14
402B 39
401B 16
396A 16
397A103
397A103
397A103
397A103
397A103
397A103
397A103
397A103 | 397A 10
402B 8
397A 12
402B 17
402B 16
403B 53
402B 18
397A 17
399B 36
398A107
400B 62
398A107
398A107
398A107
398A107 | 398A 10
403B 8
398A 13
403B 21
403B 20
404B 53
403B 22
398A 18
399A102
399A102
399A102
399A102
399A102
399A102
399A102
399A102
399A102
399A102 | 399A 10
404B 8
399A 13
404B 22
404B 21
405B 38
404B 23
399A 18
401B 44
400A101
400A101
400A101
400A101
400A101
400A101
400A101
399A 22 | 400A 10
405B 8
400A 11
405B 16
405B 15
406B 59
405B 17
400A 16
403B 64
401A102
401A102
401A102
401A102
401A102
401A102
401A102
401A102 | 401A 10
406B 8
401A 14
406B 25
406B 24
407B 49
406B 26
401A 19
403B 65
402A108
403B 59
402A108
402A108
402A108
402A108
402A108
402A108
402A108 | | C.6
D.
D.1a | 391A102
391A114 | | 393A101
393A114 | 394A 97
394A111 | 395A105 | 396A100
397B 39 | | 398A117 | 399A100 | 400A100 | 401A101
401A109 | 402A106
402A125 | | D.1ba
D.1c
D.1d
D.1e
D.1f
D.1g | 391A116
391A117
412B 69
392B 38 | 392A101 | 393A119
412B 70
393A120 | 394A113
394A116
412B 71
394A117
394A115 | 395A117
395A120
412B 72
395A121
395A119 | 396A113
396A116

396A117
396A115 | 397A116
397A119
412B 73
398B 47
397A118 | 398A122
398A123 | 399A122
399A125
412B 74
399A126
399A124 | 400A115
400A118
412B 76
400A119
400A117 | | 402A127
402A130
412B 77
403B 69
402A129 | | F.1a
F.1b
F.1e
F.1f
F.1g
F.1h | 391A109
391A109
391A109
393B 44
393B 44 | 392A 96
393B 44
394B 36 | 393A109
393A109
394B 36 | 394A110
394A110
394A110
394A110
394A110 | 395A114
395A114
395A114
395A114
395A114 | 396A110
396A110
396A110 | 397A109
397A109
397A109
397A109
397A109 | 398A116
398A116
400B 70 | 399A115
399A115
400B 70 | 400A112
400A112
400A112
402B 47
402B 47 | 401A108
402B 47 | 402A124
406B 73
402A124 | | F.1i
F.1j
F.1k | 391A109
391A109 | | | 394A110
394A110 | 395A114
395A114
395A114 | 396A110 | 397A109 | 398A116 | 399A115 | 400A112
400A112 | 401A108
401A108 | 402A124
402A124 | | H.
H.60
H.62 | 390A 4
396B 28 | | | 393A 5
399B 26 | 394A 5
400B 42 | | 396A 5
402B 32 | | | | | | ^{*} See "Key" on pages 64 and following. | INDEX TO | "SOL | AR-GEOPHYSICAL | DATA" | |----------|------|----------------|-------| |----------|------|----------------|-------| | | ec ec |
--|--| | | | | | 14A 48
13A 11 | | A.2b A.2c 402A 9 403A 9 404A 9 405A 9 406A 9 407A 9 408A 9 409A 9 410A 11 411A 11 412A 9 4 A.3a 403A 46 404A 40 405A 48 406A 54 407A 46 408A 50 409A 18 410A 48 411A 46 412A 40 413A 48 4 A.3b 403A108 404A 96 405A10 406A114 407A108 408A110 409A100 410A110 411A106 412A102 413A108 4 A.3c 403A 46 404A 40 405A 48 406A 54 407A 46 408A 50 409A 38 410A 48 411A 46 412A 40 413A 48 4 A.4 403A 47 404A 40 405A 48 406A 54 407A 46 408A 50 409A 38 410A 48 411A 46 412A 40 413A 48 4 A.4 403A 47 404A 40 405A 48 406A 54 407A 46 408A 50 409A 38 410A 48 411A 46 412A 40 413A 48 4 A.5 403A 47 404A 40 405A 48 406A 54 407A 46 408A 50 409A 38 410A 48 411A 46 412A 40 413A 48 4 A.5 403A 47 404A 40 405A 48 406A 54 407A 46 408A 50 409A 38 410A 48 411A 46 412A 40 413A 48 4 A.5 403A 47 404A 96 405A110 405A114 407A108 408A110 409A104 11A104 411A104 412A 40 413A 48 4 A.5b 403A114 404A104 405A119 406A124 407A118 408A119 409A110 410A120 411A116 412A104 413A116 4 | 113A 11
114A 48
114A110
114A 48
113A 42
114A 48
114A 48
114A110
114A121
114A 46 | | A.56 407B 4 408B 4 409B 4 410B 70 411B 4 412B 4 413B 4 414B 4 A.76 402A 29 403A 36 404A 29 405A 31 406A 35 407A 34 408A 37 409A 28 410A 37 411B 36 — 4 A.79 402A 29 403A 35 404A 27 405A 32 406A 36 407A 36 409A 38 409A 29 410A 39 411A 35 412A 30 4 A.7h 403A 46 404A 40 405A 48 406A 54 407A 46 408A 50 409A 38 410A 48 411A 46 412A 40 413A 48 4 A.8aa 402A 9 403A 9 404A 9 405A 9 406A 9 407A 9 408A 9 409A 9 410A 11 411A 11 412A 9 4 A.8q 402A 9 403A 9 404A 9 405A 9 406A 9 407A 9 408A 9 409A 9 410A 11 411A 11 412A 9 4 A.9cb 403A 47 404A 40 405A 48 406A 54 407A 46 408A 50 409A 38 410A 48 411A 46 — — — — — — — — — — — — — — — — — — | 113A 38
113A 36
114A 48
113A 11
113A 11 | | A.10a 402A 16 403A 20 404A 17 405A 17 406A 19 407A 20 408A 19 409A 17 410A 23 411A 20 412A 18 4 A.10c 402A 19 403A 23 404A 20 405A 20 406A 22 407A 23 408A 23 409A 21 412B 59 411A 23 412A 21 4 A.10d 402A 18 403A 22 404A 19 405A 19 406A 23 407A 24 408A 23 409A 21 412B 59 411A 24 412A 22 4 A.10e 402A 18 403A 22 404A 19 405A 19 406A 21 407A 24 408A 23 409A 21 412B 59 411A 24 412A 22 4 A.10f 402A 17 403A 21 404A 19 405A 19 406A 20 407A 21 408A 21 409A 19 410A 25 411A 22 412A 20 4 A.10f 402A 17 403A 21 404A 19 405A 18 406A 20 407A 21 408A 20 409A 18 410A 24 411A 21 412A 19 4 A.11b 403A 16 404A 18 405A 18 405A 29 406A 30 407A 29 408A 31 409A 25 410A 32 411A 29 412A 25 4 A.11b 403A 46 404A 40 405A 48 406A 29 406A 30 407A 29 408A 31 409A 25 410A 32 411A 29 412A 25 4 A.11b 403A 46 404A 40 405A 48 406A 54 407A 46 408A 50 409A 38 410A 48 411A 46 — — — — — — — — — — — — — — — — — — | 113A 21
113A 24
113A 25
113A 23
113A 22
114A126
113A 30 | | A.12bb 402A 31 — 408A 43 — 412A 29 — 412A 29 — 413a 402A 30 — 402A 31 — 406A 44 — 408A 45 — 412A 29 — 412A 29 — 413a 402A 31 — 402A 31 — 408A 43 — 412A 29 20 — 412A 29 20 — 412A 20 — 412A 29 — 412A 20 | | | A.17 4088 83 4088 61 4098 35 4108 67 4118 53 4128 44 4138 62 4148 31 A.17 402A 31 | 148 52

13A 40 | | A.18 402A 31 — 412A 29 — | | | 8.52 403A148 404A144 405A158 406A171 407A158 408A168 409A142 410A160 411A158 412A162 413A160 4 | 14A172
14A174 | | C.10a 4073 8 4088 8 4098 8 4108 8 4118 8 4128 8 4138 8 4148 8 | 13A 14
13A 20 | | 402A 21 403A 25 404A 22 405A 22 406A 24 407A 25 408A 24 409A 22 410A 26 41IA 25 412A 23 4 405B 45 405B 45 405B 466 62 407B 67 407A151 409A152 409A129 410A147 41IA144 412A148 413A147 41A144 413A134 41A144 412A148 413A134 41A144 412A148 413A134 41A144 412A148 413A134 41A144 412A148 41A144 412A148 413A134 41A144 412A148 41A1448 | 13A 25
114A159
114A142
114A142
114A142
114A142 | | C.41 406B 70 404A122 405A138 406A144 407B 52 40BA138 409A115 410A139 411A135 412A134 413A134 4 C.5e 402A 26 403A 29 404A 26 406A 32 407A 29 408A 33 409A 27 410A 34 411A 31 412A 27 4 C.5f | 114A142
113A 32 | | D• | 1144122 | | D.10a 403A144 404A141 405A153 406A164 407A162 408A162 409A137 410A155 411A153 412A157 413A154 4 D.10c 414A167 | 114A164
114A166
114A167
114A170 | | D.1f 403A147 405B 55 406B 72 406A169 407A166 408A167 409A141 410A159 411A157 412A161 413A158 4 D.1g 405B 53 405B 54 405A155 406A166 408B 80 408A164 409A139 410A157 411A155 412A159 413A156 4 | 114A171
114A169
113A 43 | | F.1a 403A138 404A138 405A150 407B 70 407A155 408A155 410B 98 410A152 411A150 412A154 414B 57 4 F.1b 406B 73 406B 73 406B 73 406A161 411A 69 411A 69 411A 69 F.1e 403A138 404A138 405A150 407B 70 407A155 408A155 410B 98 410A152 411A150 412A154 414B 57 4 F.1f F.1g F.1h | 114A161
114A161 | | F-11 403A138 404A138 405A150 406A161 407A155 408A155 409A134 410A152 411A150 412A154 413A149 F-13 403A138 404A138 405A150 406A161 407A155 409A155 409A134 410A152 411A150 412A154 413A149 F-1k H- | | | H.60 402A 5 403A 5 404A 4 405A 4 406A 4 407A 4 408A 5 409A 5 410A 5 411A 4 412A 4 4
H.62 408B 70 409B 40 410B 72 411A 58 412B 48 413B 72 414B 40
* See "Key" on pages 64 and following. | 113A 5 | $[\]star$ See "Key" on pages 64 and following. #### DEGREES FROM CENTRAL MERIDIAN ### DAYS FROM CENTRAL MERIDIAN June II - June 18 Nov 26 - Dec 3 Oec 12 - Dec 19 May 25 - June 2 ## June 19-June 27 Nov 18-Nov 25 June 28-July 6 Nov 10-Nov 17 Mey 8 - Mey 16 July 7-July 16 Oct 31- Nov 9 T yoM - 8S 1qA ₽I not - 3 not July 17 - July 27 Oct 20 - Oct 30 TS 19A -TI 19A PS not-Blact July 28 - Aug 12 Oct 5 - Oct 19 8 d#7 - 65 not Aug 13-Oct 4 1 1qA- 6 ds7 # WORLD DATA CENTER A ## FOR The ICSU Panel on WDCs has recommended that it would be appropriate courtesy to acknowledge in publications that data were obtained from the originating station or investigator through the intermediary of the WDCs. The following statement is suggested: "Data used in this study were provided by WDC-A for Solar-Terrestrial Physics, NOAA E/GC2, 325 Broadway, Boulder Colorado 80303, USA."