

NOAA Non-standard and Test Products for Space Weather

William Denig¹ Rodney Viereck²

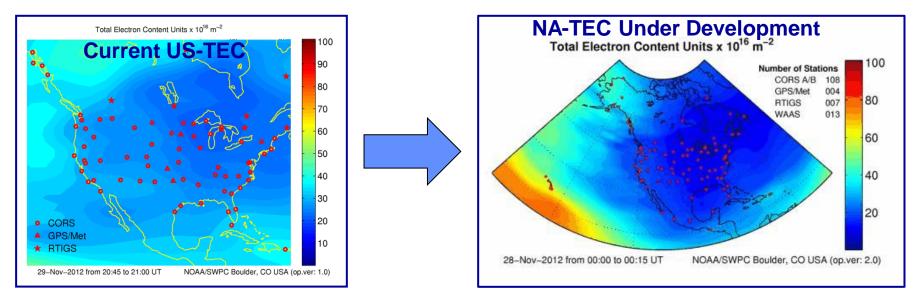
¹National Geophysical Data Center (NGDC)

²Space Weather Prediction Center (SWPC)

AGU - 12/2012 Paper: IN31D-03

Non-standard SWx Products

Available from SWPC / NGDC


Non-standard test products include space weather models and applications that are under development as betaversion or test products.

- <u>NA-TEC</u> (**North America Total Electron Content**) Ionospheric model of vertical TEC within North America and surrounding areas.
- <u>FIRST</u> (**Forecasting lonospheric Real-time Scintillation Tool**) Forecast the probability of evening equatorial scintillation by monitoring the height rise of the ionospheric F layer (after Redmon & Anderson [2010]).
- <u>SEAESRT</u> (Space Space Environmental Anomalies Expert System Real Time) – Risk assessment tool for geosynchronous satellite operations (after O'Brian et al [2009]).
- OPRT (OVATION Prime Real-Time) Real-time forecast and nowcast model of auroral power using ACE solar-wind data and Kp (after Newell et al [2009]).
- <u>PeEPs</u> (**People Empowered Products**) Combines Twitter reports of auroral sightings with auroral model projected onto Google Earth.
- <u>ART</u> (**Auroral Resources Toolkit**) A rich internet application for the visualization and collaboration of auroral phenomenology.

NA-TEC: North America Total Electron Content

A Product for GPS Users

SWPC/NGDC are expanding the coverage of the operational US TEC model to cover North America

- > Errors in GPS position information are directly related to the Total Electron Content above the receiver.
- ➤ Both US-TEC and NA-TEC are Kalman-filter based data assimilation ionospheric models of Total Electron Content. (TEC) which can be an indicator of GPS error.
- The solution is well constrained over the CONUS due to the availability of GPS receivers but not so at the high and low latitudes.
- More real-time data is needed. Efforts are underway to add new receivers in Alaska and Canada. Many data sets are not "real time" (Latency <15 minutes)</p>
- Customers: Airlines, Agriculture, Surveying, Snow Removal, Oil Exploration

Status: Validation prior to release as a test product

US-TEC: http://www.swpc.noaa.gov/ustec/index.html

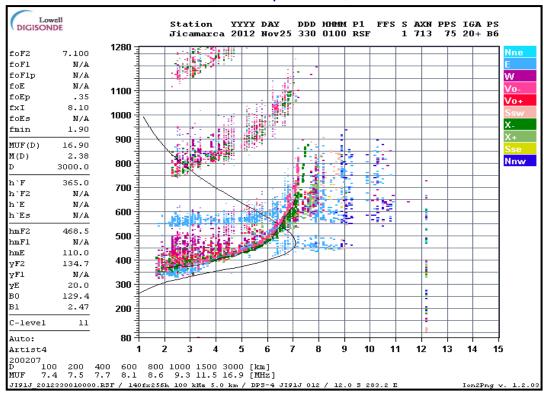
FIRST: Forecasting Ionospheric Rt Scintillation Tool

A Product for Dual Frequency GPS Users Near the Equator

Kwajalein Scintillation Forecast (FIRST)

h'F time history (LT):

Date	11/5	11/4	11/3	11/2	11/1	10/31	10/30
Day of Year	309	308	307	306	305	304	303
19:45LT	<u>240</u>	245	N/A	<u>380</u>	N/A	<u>320</u>	245
19:30LT	<u>275</u>	<u>340</u>	N/A	<u>340</u>	405	N/A	<u>385</u>
19:15LT	<u>290</u>	290	N/A	N/A	290	N/A	365
19:00LT	300	325	N/A	N/A	295	N/A	355
18:45LT	<u>305</u>	<u>295</u>	N/A	<u>280</u>	N/A	N/A	N/A
18:30LT	280	<u>265</u>	622	<u>300</u>	340	235	170
THMS4							


Jicamarca Scintillation Forecast (FIRST)

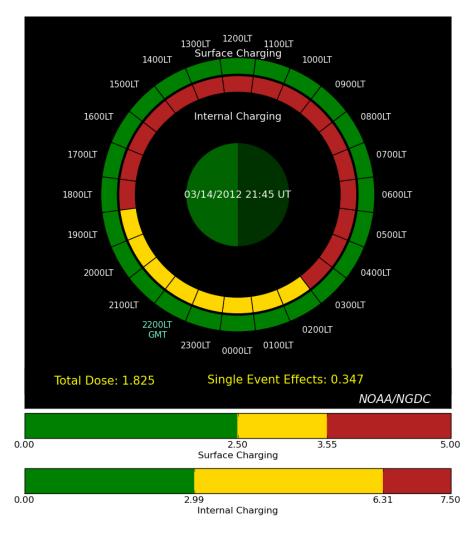
h'F time history (LT):

Date	11/5	11/4	11/3	11/2	11/1	10/31	10/30
Day of Year	309	308	307	306	305	304	303
19:30LT	<u>356</u>	<u>311</u>	<u>296</u>	<u>276</u>	<u>291</u>	<u>275</u>	<u>307</u>
19:15LT	<u>353</u>	<u>272</u>	<u>292</u>	<u>270</u>	<u>283</u>	<u>273</u>	<u>307</u>
19:00LT	<u>332</u>	<u>285</u>	<u>278</u>	<u>260</u>	<u>270</u>	<u>268</u>	N/A
18:45LT	<u>286</u>	<u>270</u>	<u> 265</u>	<u>255</u>	257	<u>262</u>	<u>285</u>
18:30LT	<u>260</u>	260	255	247	246	<u>251</u>	<u>262</u>
THMS4							

Predict the occurrence of local ionospheric scintillation:

- Evening-side phenomena at low magnetic latitudes.
- ➤ Uses ionosonde measurements of the ionosphere height h'F, (values in boxes) as a proxy for ExB drift and to assess likelihood of scintillation.
- Red Likely / Yellow Possible / Green Unlikely
- Customers: Aviation, Oil Exploration, DOD

SEAESRT: Space Env. Anomalies Expert System RT Supporting Satellite Operators in Geostationary Orbit

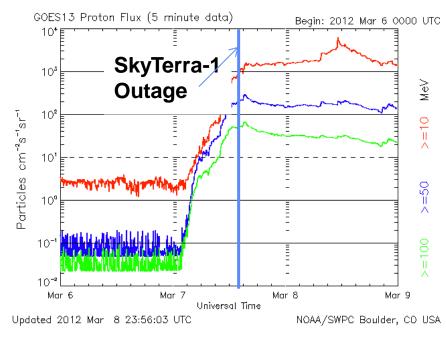

Near real-time utility to calculate spacecraft charging hazard quotients for geostationary satellites.

Inputs: GOES particle data and the K_p geomagnetic index.

Satellite charging hazards:

- Surface charging Surface discharging induced currents; low energy particles.
- Internal charging Electro-static discharge within sensitive electronics; medium energy particles.
- Single Event Upsets Particle energy deposition in microelectronics; very energetic particles.

Customers: Geosynchronous Satellite Operators

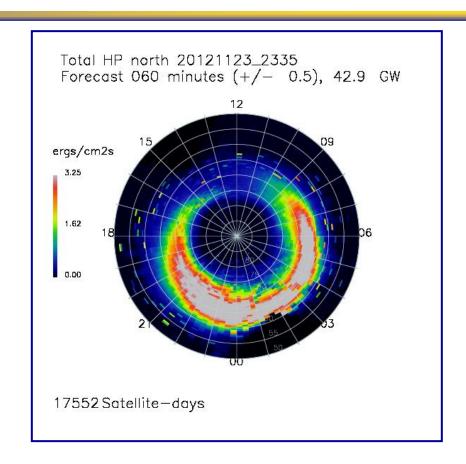


Status: Being Transitioned to Operations

Skyterra Failure: Single Event Upsets SEAESRT Confirms Probable Cause

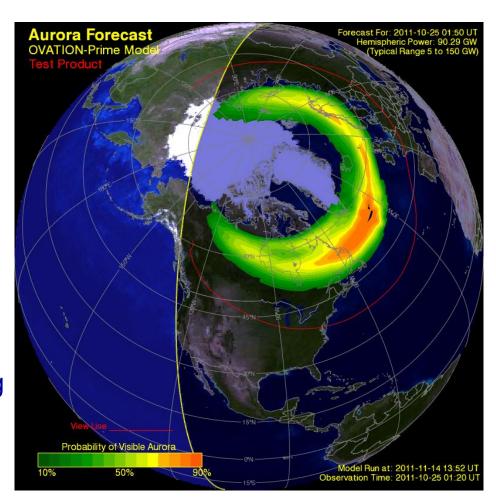
The SkyTerra outage was likely caused by a solar proton induced Single Event Upset (based on SEAESRT hazard estimates).

- GOES 13 data: SkyTerra-1 outage began on March 07 14:43 UT just after the flux of energetic protons increased dramatically.
- SEAESRT: Hazard estimate due to energetic protons indicates that a single event upset was 106 times more likely at the time of the outage.
 - The SEAESRT hazard quotient is based on the flux of >30 MeV protons measured by GOES at the time of the anomaly
 - Hazard QuotientZ=(495 protons/cm2-s-str)/4.67

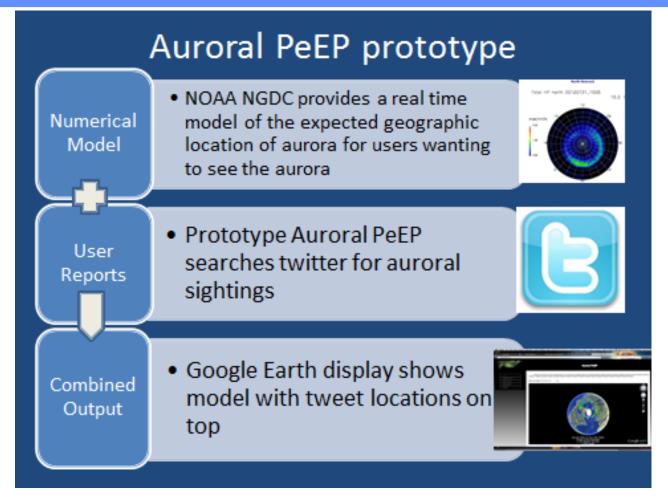


Ovation Prime:

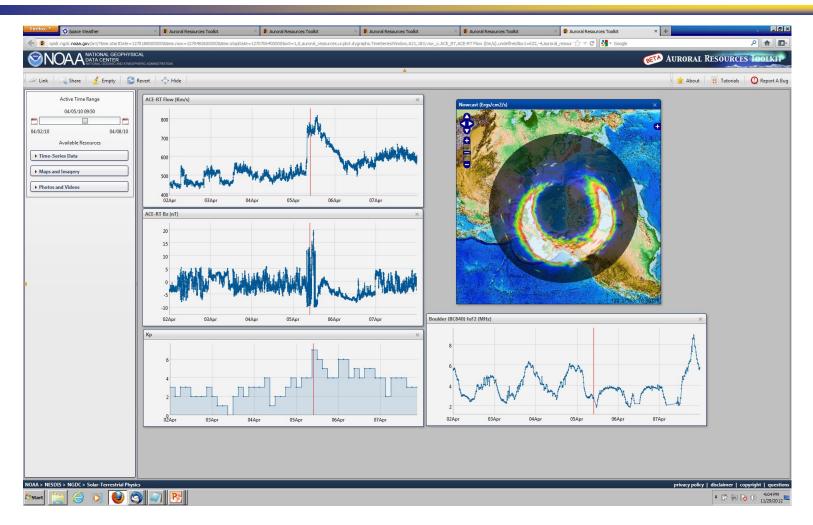
Short Term Forecasts of Aurora


- Provides 30-50 min forecast auroral energy deposition in geomagnetic coordinates and hemispheric power (gigawatts).
- Runs on a 5 minute cadence.
- Empirical model based on DMSP particle data and driven by real-time ACE measurements at L1
- Improvements underway
 Robustness
 Expand to larger storms
 Multi-day forecast
- Customers: Space Weather Models/products, GPS users, HF Com, DoD

Ovation: Aurora Probability


- An additional OVATION product is a map of the aurora in geographic coordinates
- Designed as a forecast product for the public
 - Probability of aurora
 - Location of aurora
 - Intensity of aurora
- Customers: Aviation, Oil Exploration, Tourism industry, general public interested in viewing the aurora
- Status: In transition to operations

PeEPsPeople Empowered Products


Goal: To create a generic framework that incorporates user reports into NOAA real time and retrospective weather products

Status: Under development

ARTAuroral Resources Toolkit

A rich internet, open source application for visualization and collaboration of auroral phenomenology utilizing VxO best practices.

Web access: http://1.usa.gov/le0Q2V

SummaryConcluding Remarks

- SWPC and NGDC have a number of "non-standard" products that are available or under development for the space weather community.
- These products are driven by user and customer requirements.
- Each product will go through a test and evaluation period where customer feedback will be solicited

NA-TEC

 Rodney.Viereck@noaa.gov 303 497-7348

 FIRST

 Rob.Redmon@noaa.gov 303 497-4331
 SEAESRT
 OPRT
 Janet.Machol@noaa.gov 303 497-6686
 PeEPs
 Janet.Green@noaa.gov 303 497-4845
 ART
 Rob.Redmon@noaa.gov 303 497-4331

Thank You

Questions?

References Additional Reading

NA TEC

Fuller-Rowell, T., E. Araujo-Pradere, C. Minter, M. Codrescu, P. Spencer, D. Robertson, and A. R. Jacobson (2006), US-TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data, *Radio Sci.*, 41, RS6003, doi:10.1029/2005RS003393.

FIRST

Redmon, R., Anderson, D., Caton, R., Bullett, T. (2010), A Forecasting Ionospheric Real-time Scintillation Tool (FIRST), *Space Weather, 8*, S12003, doi:10.1029/2010SW000582, 2010

McNamara, L. F. (2006), Quality figures and error bars for autoscaled Digisonde vertical incidence ionograms, *Radio Sci., 41*, RS4011, doi:10.1029/2005RS003440.

SEAESRT

O'Brien, T. P. (2009), SEAES-GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit, *Space Weather, 7*, S09003, doi:10.1029/2009SW000473.

OPRT

Machol, J. L., J. C. Green, R. J. Redmon, R. A. Viereck, and P. T. Newell (2012), Evaluation of OVATION Prime as a forecast model for visible aurorae, *Space Weather*, *10*, S03005, doi:10.1029/2011SW000746.

Newell, P.T., T. Sotirelis, and S. Wing (2010), Seasonal variations in diffuse, monoenergetic, and broadband aurora, *J. Geophys. Res., 115*, A03216, doi:10.1029/2009JA014805.

PeEPs

S. Codrescu, J.C. Green, R.J. Redmon, W.F. Denig and E.A. Kihn (2012), NOAA People Empowered Products (PeEP): Combining social media with scientific models to provide eye-witness confirmed products (IN23F-02), AGU Fall Mtg, 03-07 Dec 2012, San Francisco, CA.

ART

Elespuru, P., R.J. Redmon., E.A. Kihn., M. Zhizhin and D. Medvedev, (2010), Auroral Resources: Dataset Access and Interactive, Visualization (IN43A-1395), AGU Fall Mtg., 13-17 Dec 2010, San Francisco, CA.