Quantifying Surface and Internal Charging Parameters Through Flying Virtual Satellites in the RAM-SCB Inner Magnetosphere Model

Sorin Zaharia, D. T. Welling, V. K. Jordanova and R. H. W. Friedel

Los Alamos National Laboratory Los Alamos, NM 87545

11th Spacecraft Charging Technology Conference (SCTC) Albuquerque, NM, September 24, 2010

Outline

- Goal: quantifying the ambient environment along satellite orbit, relevant to spacecraft charging, by "flying" virtual satellites in model domain
- Physics-based model: Ring Current Atmosphere Interactions Model with Self-Consistent Magnetic (B) field (RAM-SCB)
 - Importance of interaction between particles and fields
 - Can be driven by global model (e.g. SWMF) or data-driven (e.g. LANL)
 - Full 3-D and pitch angle anisotropy
 - Particles include contributors to both surface and internal charging
- Results: RAM-SCB geomagnetic storm simulation
 - Proof of principle: virtual satellites in RAM-SCB; virtual spectrograms
- Potential of virtual spacecraft in space weather models to prescribe the environment relevant to spacecraft charging

Storm-time Inner Magnetosphere

From Daglis, [2006]

- Challenge: to understand and model the space environment, specifically geomagnetic storm changes in the inner magnetosphere:
 - 1. Major changes in the geomagnetic field
 - 2. Ring current (keV to 10s of keV) enhancement (\rightarrow surface charging)
 - 3. High-energy (MeV and 100s of keV) electron flux enhancement
 - (→ internal charging)
 - Affected by plasma-excited waves
 - > Dependent on the magnetic field

Dipole Approximation Breaks Down in the Storm-time Inner Magnetosphere

Observations → strong magnetic field decrease during storms

- Dipole approximation breaks down at 3-4 R_E
- The changed field significantly influences plasma/rad. belt particles

- Plasma also changes the field
- Global magnetohydrodynamics (MHD) models:
 - Fully self-consistent, but unrealistic in inner magnetosphere
 - Ring current energy density ~ 1/10th of observed values
 - Causes: Coarse resolution; lack of gradient/curvature drifts and heat flux [Heinemann and Wolf, 2001]

RAM-SCB: Self-consistent Kinetic Inner Magnetosphere Model

Ring current-atmosphere interactions model (RAM) [Jordanova et al., 1994, 2006]

- Bounce-av. Boltzmann eq.
- Applied convective + corotation E-field
- Updated to general magnetic (B) field

RAM-SCB Formalism: RAM

- RAM-SCB: particle/field dynamics on time scales > bounce/Alfven times
- Kinetic Ring Current Atmosphere Interactions Model (RAM):
 - Evolution of bounce-averaged distribution function [Jordanova et al., 1994]
 - Energy range: 100 eV to 500 keV
 - Generalized to arbitrary (closed-line) magnetic field geometry
 - 4 coordinates: 2 spatial (R, ϕ) + energy E, pitch angle α ($\mu_0 = \cos \alpha$)

$$\left\langle \frac{dF_{t}}{dt} \right\rangle = \frac{\partial F_{t}}{\partial t} + \frac{1}{R_{o}^{2}} \frac{\partial}{\partial R_{0}} \left(R_{o}^{2} \left\langle \frac{dR_{0}}{dt} \right\rangle F_{t} \right) + \frac{\partial}{\partial \varphi} \left(\left\langle \frac{d\varphi}{dt} \right\rangle F_{t} \right) + \frac{1}{\sqrt{E}} \frac{\partial}{\partial E} \left(\sqrt{E} \left\langle \frac{dE}{dt} \right\rangle F_{t} \right) + \frac{1}{h(\mu_{o})} \frac{\partial}{\mu_{o}} \frac{\partial}{\partial \mu_{o}} \left(h(\mu_{o}) \mu_{o} \left\langle \frac{d\mu_{o}}{dt} \right\rangle F_{t} \right) = \\ = \left\langle \frac{dF_{t}}{dt} \right\rangle_{losses}$$

• Most physically complete model; different losses: charge exchange, Coulomb collisions, wave-particle interactions, losses to atmosphere

RAM-SCB Fo

- Single-fluid plasma equation of motion:
- Plasma and fields in the near-Earth magnetosphere (< 10 R_F) in quasi-force balance (slow-flow approximation; Wolf, [1983])

- B-field in Euler potential representation:
- Coupled quasi-2D elliptic PDEs, solved iteratively [Zaharia et al., 2004;2008]

$$\rho \bullet \begin{bmatrix} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \end{bmatrix} = \mathbf{J} \times \mathbf{B} \cdot \nabla \cdot \mathbf{P}$$

mass acceleration force density
$$\mathbf{J} \times \mathbf{B} = \nabla \cdot \mathbf{P}$$

With $\nabla \cdot \mathbf{P} = \nabla P_{\perp} - \nabla \cdot [(P_{\perp} - P_{\parallel})\mathbf{b}\mathbf{b}]$
$$\downarrow$$

$$\sigma \mathbf{J} \times \mathbf{B} = \nabla P_{\perp} - (\mathbf{B} \cdot \nabla \sigma)\mathbf{B} + (1 - \sigma)\nabla \left(\frac{B^{2}}{2}\right)$$
Force balance equation
$$\overline{\sigma} = 1 + \frac{P_{\perp} - P_{\parallel}}{B^{2}}$$

$$\nabla \times \mathbf{B} = \mu_{0}\mathbf{J}$$
Ampere's law
No magnetic monopoles
$$\nabla \cdot \mathbf{B} = 0 \implies \mathbf{B} = \nabla \alpha \times \nabla \beta$$

$$\alpha, \beta = \text{Euler potentials}$$

(Clebsch coordinates or flux coordinates)
$$\alpha = \text{magnetic flux function}$$

$$\beta = \text{angle - like variable}$$

$$\sigma \nabla \cdot \left[(\nabla \alpha)^{2} \nabla \beta - (\nabla \alpha \cdot \nabla \beta) \nabla \alpha \right] = -\mu_{0} \frac{\mathbf{B} \times \nabla \alpha}{B^{2}} \cdot \left[\nabla P_{\perp} + (1 - \sigma) \nabla \left(\frac{B^{2}}{2}\right) \right]$$

$$\sigma \nabla \cdot \left[(\nabla \alpha \cdot \nabla \beta) \nabla \beta - (\nabla \beta)^{2} \nabla \alpha \right] = \mu_{0} \frac{\mathbf{B} \times \nabla \beta}{B^{2}} \cdot \left[\nabla P_{\perp} + (1 - \sigma) \nabla \left(\frac{B^{2}}{2}\right) \right]$$

2

RAM-SCB Model Setup

RAM-SCB domain (T89 boundary)

- Coupling freq.: 5 min.
- Plasma sheet boundary:
 - 6.6 R_E LANL obs. (MPA/SOPA)
 - Empirical plasma models/global codes (BATSRUS MHD)
- B-field boundary:
 - Empirical (T89, T04S)
 - BATSRUS MHD code
- E-field: empirical (Volland/Stern, Weimer) or from IE model
- Dipole tilt included (RAM in equatorial SM plane)

RAM-SCB Inside Space Weather Modeling Framework (SWMF)

 Alternative RAM-SCB input: plasma & magnetic boundaries from BATS-R-US, electric potentials from ionospheric electrodynamics (IE) solver [Zaharia et al., submitted to J. Geophys. Res., 2010]

Simulated Event: Sep. 2005 Geomagnetic Storm

- Aug. 31, 2005 large CME-driven storm; min. SYM-H = -116 nT
- Main phase /early recovery (9:00 UT to 24:00 UT) simulated
- RAM-SCB inputs:
 - Plasma conditions at outer boundary by LANL geo. obs.
 - Ion composition by Young et al.
 [1982] empirical relationship:

 $n_{O+}/n_{H+} = 4.5 \times 10^{-2} \exp \left[0.17 \text{ Kp} + 0.010 \text{ F}_{10.7} \right]$

- Convection electric field: Weimer 2001 empirical model
- B-field boundary by the T89 empirical model

Results – Ring Current and Dst

- Contribution to ring current by H+ and O+ for 3 times: early storm (14:00 UT), observed Dst peak (17:00 UT), early recovery (23:00 UT)
- RAM-SCB underpredicts the total ring current energy (and Dst)
 - Dst obtained with Dessler-Parker-Sckopke (DPS) formula from energy density inside geosynchronous orbit only
 - Magnetotail current contribution (up to 50% e.g. Ganushkina et al., [2004]) not included

Results at Virtual Spacecraft Locations

- Output from RAM-SCB inside irregular 3-D cloud
 - Post-processing needed for output at each location of interest

- Or: "fly" spacecraft in the simulation, obtain output at satellite location directly:
 - 1. For each point on satellite orbit, find grid nearest neighbors by k-d tree (octree) search method *[Kennel, 2004]*
 - 2. Interpolate (distance-weighted) among a set number of nearest neighbors
 - 3. For particle flux, use Liouville's theorem to map distribution function from SM equatorial plane to all locations within 3-D domain

- Radiation Belt Storm Probes (RBSP)
 - slated to launch in 2012
 - 2-spacecraft mission will examine the radiation belts in-depth, including waves, magnetic and electric fields, and plasmas of ring current energies
- RBSP satellites included to examine what they would observe had they been in orbit for this event; using a portion of their early mission orbits
 - RBSP 1 spends most of the storm main phase in the noon/dusk quadrant; RBSP 2 lags behind slightly

- Magnetic field at RBSP 1 on left
- Fields are obtained at spacecraft location by interpolating from 8 nearest neighbor grid points to satellite location

- Omnidirectional flux for H+ and O+ at RBSP 1 for RAM energies (100 eV to 500 KeV)
- Results "drop out" (e.g. 17:30 UT) when satellite leaves the simulation domain or when the grid nearest neighbors are beyond a set threshold

Results: Instrument-Specific, **Combined Species**

21:00 UT

21:00 UT

21:00 UT

21:00 UT

21:00 UT

15:48 MLT

12.4° MLat

R=5.35 R.

104

10¹

10

10³

10²

10¹

104

10¹

104

10³

10² 10¹

100

10

10³

10²

10¹ 100

10³ है 10²

10³ 8 10²

- Helium, Oxygen, Proton, Electron (HOPE) instrument on RBSP:
 - ions/e- from 1 eV to 50 KeV
 - 5 separate polar pixels
- Coincidence counting rates from directional flux: C=J*G*dE
 - J = directional flux
 - G = geometric factor
 - dE = width of energy bin
- RAM-SCB virtual satellite -> count rates for each pixel

Results: Instrument & Species-specific

- Spacecraft spin axis assumed parallel to local B
- RAM-SCB is gyrotropic
 results spin averaged

RAM-SCB symmetric about 90° pitch angle
 pixels +/- 1 and 2 equivalent

Summary

- Motivation: To quantify space environment output at specific spacecraft from numerical space weather model
- Tool: RAM-SCB physics-based self-consistent inner magnetosphere model: kinetic model + 3D force balance code
- Results:
 - Proof of principle: technique of "flying" virtual satellites in RAM-SCB successfully developed/used to generate high-res. results along spacecraft orbit (RBSP)
 - Satellite-specific simulation results used to create instrument-specific count rates/virtual spectrograms
 - Method applied to the RBSP HOPE instrument to create a mock-up of lowlevel data products

Virtual Satellites in Numerical Models

- "Virtual" satellites powerful method to tie observations and simulations together
- Use of virtual satellites many research and applications possibilities:
 - Obtain ambient space environment for spacecraft charging models
 - Perform one-to-one model-observation comparisons
 - Complement existing observations with virtual set not bound by instrument restrictions
 - Plan for future missions with data product mock-ups/observation predictions
 - Monitor spacecraft-specific environmental conditions with real-time simulations

Future Plans

- Model improvements:
 - Expand boundary to 9 or 10 R_E (to obtain geosynchronous model output)
 - Include electrons to RAM-SCB simulation
 - Develop real-time version and validate/determine performance vs. input parameters
- Virtual satellite technique improvements:
 - Allow B-field and spacecraft spin axis to be non-parallel
 - Use geometric factors that vary in look angle and across the detector
 - Expand the number of instruments simulated
- Use model environment output in spacecraft charging code (e.g. NASCAP-2K)

