11th Spacecraft Charging Technology Conference, Albuquerque, NM, September 23, 2010

Highly Efficient Field Emission Cathodes Using Carbon Nanotubes

by Yasushi Ohkawa¹⁾, Kiyoshi Hashimoto²⁾, Shoji Kitamura¹⁾, Koji Matsumoto¹⁾, and Satomi Kawamoto¹⁾

Japan Aerospace Exploration Agency
 Toshiba Corporation

Presentation Outline

- Motivation
 - Demand for small & low-power electron sources
- Objective
 - To develop feasible small cathodes for space application
- Field Emission Cathode Using Carbon Nanotube
 - Fundamentals
 - Desirable characteristics for field emission cathode
- Experiments
 - Laboratory model cathode
 - Current-voltage characteristics
 - Influences of relative potential conditions
 - Long duration test
- Summary

Motivation and Objective

- Demand for small & low-power electron sources
 - Charging relaxation / control of satellites
 - Neutralizer for small electric propulsion
 - Electrodynamic tether (EDT) system
 - Electron sources for space science

Neutralizer for small lon engines

Electron source for EDT

Goal

To develop feasible small cathodes for space applications

Field Emission Cathode (FEC)

- Field Emission
 - Electrons are extracted from emitter tips by applying a strong electric field
 - "Gate" is used for the extraction
 - Electron field on the tips is enhanced by its "sharpness"
- FEC needs neither heater power nor consumables
 - Small, Simple, Low-power

Fowler-Nordheim Equation

 Field emission current is described by the Fowler-Nordheim (F-N) equation:

Carbon Nanotube Cathode

- Carbon nanotube (CNT) cathode is a type of field emission cathode
 - CNTs are used as "emitter tips"
 - CNT has Nanometer-scale tube-diameter
 - High β (field enhancement factor) can be expected
 - CNT is tolerable to ion impingement
 - Low-cost manufacturing

- Low extraction voltage
- High extraction efficiency
- Low contact voltage
- High durability

Desirable Characteristics for FECs

Low extraction voltage

- It is good for
 - Reducing power consumption
 - Avoiding high-voltage-breakdowns
- It requires
 - Decreasing emitter-gate distance
 - Using high " β " emitter tips
 - Using low "\u00f6" emitter material

High extraction efficiency

- It is good for
 - Reducing power consumption
 - Suppressing thermal load
- It requires
 - Geometrical treatment for decreasing electron flow to gate

Desirable Characteristics for FECs

Low Contact Voltage

- It is good for
 - Operational at various potential conditions
 - Reducing acceleration loss of EP
 - Reducing voltage loss in EDT

- Spacecraft potential = Emitter potential (Vs/c = Ve)
- Vs/c should be lower than plasma space potential (or EP plume potential)
- This potential difference depends on sheath condition around spacecraft
- This potential difference is better to be small

High Durability

- It is good for
 - Long term operation
- It requires
 - Tolerable emitter material against space environment
 - Ion impingement, atomic oxygen, uv, ...

Laboratory-Model Cathode 1 (LM1)

w/o shield case

w/ shield case

Size: 20 x 20 x 30 mm Mass: 24 g

CNT Emitter

- Multi-wall nanotubes by arc discharge method
- Fluffy nanotubes are complexly intertwined
- Many emission sites (tube tips) are distributed randomly

CNT emitter (JFE Engineering Corp)

SEM image of emitter surface

Role of Mask Electrode

- Mask electrode is placed on emitter surface
- Role of the mask
 - To cover unnecessary emitter area
 - To make electron trajectories converge by distorting the field

- Current loss to gate is suppressed
- High extraction efficiency

Trajectory calculation

Left: Electrical potential contours Right: Electron trajectories

Geometrical Parameters of Electrodes

[µm]

Gate thickness, t_g	50
Mask thickness, t_m	50
Emitter-gate distance, I_{e-g}	160
Slit pitch, <i>p</i> _s	500
Slit width, <i>w</i> _s	400

Circuit for Cathode Operation

- Vacuum tank simulates ambient plasma (or EP plume)
- Shield case simulates spacecraft body
- Various potential conditions are simulated by two power conditioners

Cathode Setup

$P = 5 \times 10^{-5} Pa$

- Current-Voltage characteristics
- Influences of relative potential conditions
- Long duration test

Current-Voltage Characteristics

Fowler-Nordheim plot

High linearity is a good indication that the current is attributable to "field emission".

Specs of LM1 Cathode

- Size: 20 x 20 x 30 mm
- Mass: 24 g
- Emission current: 0.6 mA
- Diameter of emitter: 4 mm
- Required voltage (BOL): 550 V
- Extraction efficiency: 98%

Influences of Relative Potential Conditions

Emission current and Gate current

Extraction efficiency

1000-Hour Operation

JAXA

- 10-emitter-arrayed FEC was used
- 4 of 10 emitters were operated
- Total emission current was around 0.5 mA (manually controlled)
- 4 emitters were operated by one power conditioner
- Background pressure: 5 x 10⁻⁵ Pa

1000-Hour Operation

Extraction voltage required for 0.5-mA-emission

- No fatal trouble in 1000-hour operation
- Extraction voltage increased from 780 to 860 V during 1000-hour operation
- Higher durability is expected in lower pressure conditions

Summary

 Laboratory models of carbon nanotube cathode were designed, fabricated, and tested

Size: 20 x 20 x 30 mm

- Feasible performance was obtained
 - Emission current: 0.6 mA
 - Required voltage (BOL): 550 V
 Mass: 24 g
 - Extraction efficiency: 98%
- Influences of relative potential conditions were evaluated
- 1000-hour-operation was conducted without fatal trouble

Future works

- Simulating practical FEC-plasma interaction
- Developing appropriate control algorism
- Coupling operation with electric propulsion