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Abstract

We present a secular variation (SV) candidate for the 13th IGRF generation for the year 2020. It is based
on the evolution of an ensemble of three dimensional dynamo simulations, which assimilates the magnetic field
from the COV-OBS.x1 model from 1840 to 2000 and the Kalmag main field model from 2001 to 2020. The
dynamo simulation setup was chosen accordingly to its performance in hindcast tests. The tests also suggest
that instantaneous SV yields better 5-year forecasts than the full dynamo dynamics. This indicates that the
model overestimates the secular acceleration. We therefore propose the instantaneous SV from our assimilation
for the 13th IGRF, and also provide ensemble based uncertainty estimates.

1 Method

The geomagnetic data assimilation framework em-
ployed here has been described in detail in Sanchez et al.
(2019). It uses an Ensemble Kalman Filter (EnKF,
Evensen, 1994) based on 3D dynamo simulations (Parody-
PDAF code, see Fournier et al., 2013). An ensemble
of dynamo simulations defines the background model
statistics (the prior), which is combined with geomag-
netic field models through a sequence of forecast and
analysis cycles. The forecast is the propagation of each
dynamo ensemble member from time ti−1 to time ti by
the numerical integration. When describing the dynamo
state with vector x and the time propagation with the
operatorM, the forecast can formally be written as:

xf
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where indexes i and e correspond to time and ensem-
ble member, respectively. Whenever observations y are
available, the analysis step is performed, using
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where H is the observation operator. The Kalman Gain
matrix
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propagates information from observed to unobserved
parts of the model state, where P and R are the model
and observation error covariances, respectively.

In order to mitigate sampling effects due to insuf-
ficient ensemble size, we apply a spectral localization
of the model covariance, of the form L ◦ P, where L
is a localization mask with either zero or unity entries.
As shown in Sanchez et al. (2019), dynamo simulations

suggest that the correlations between model coefficients
within the same azimuthal wave number are most signif-
icant. Using a localization matrix L based on the same
order m indeed rendered the EnKF stable when con-
fronted with modern high accuracy observations. Here
we use an additional localization based on the equa-
torial symmetries of the different fields of the dynamo
system, as suggested in Sanchez et al. (2019). A rep-
resentation of the model covariance P and localization
matrix L is shown in Fig. 1. The spectral localization
allows us to use a moderate ensemble size of Ne = 256
dynamo models.

The background dynamo simulation setup used in
the assimilation closely resembles the one in Sanchez
et al. (2019). It corresponds to a model with Ekman
number E = 10−4, modified Rayleigh number Ra= 10−5,
and magnetic Prandtl number Pm=10. Relevant out-
puts are the Reynolds number Re = 43, the magnetic
Reynolds number Rm = 430 and a marginal Earth-
likeness following the criteria by Christensen et al. (2010).
Time was rescaled by matching the secular variation
time scale of the simulation to characteristic Earth val-
ues (Lhuillier et al., 2011). The magnetic field was
rescaled so that the mean axial dipole of the initial en-
semble matches the average value of the observations
over the period 1840 to 2020.

Finally, the IGRF SV candidate model consists on
the set of ġm` coefficients truncated to spherical har-
monic degree L = 8. The numerical dynamo model
provides the instantaneous SV for each ensemble mem-
ber, which then allows calculating the ensemble mean:

¯̇gm` (t) =
1

Ne

Ne∑
e=1

ġm`,e(t), (4)
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Figure 1: Top: Subset of the normalized model covari-
ance P, showing correlations of the poloidal magnetic
field at the core surface calculated from the ensemble of
dynamo simulations. Bottom: Localization matrix L.

together with its corresponding standard deviation

σ[ġm` (t)] =

√√√√ 1

Ne − 1

Ne∑
e=1

[ġm`,e(t)− ¯̇gm` (t)]2, (5)

in units of nT/yr.

2 Observations

We assimilate the main field from two datasets: the
COV-OBS.x1 model by Gillet et al. (2015) and the
Kalmag model issued by the Potsdam University team
led by J. Baerenzung, also participating as an IGRF-
13 candidate model. COB-OBS.x1 is a model based on
magnetic observatory and satellite data, spanning the
years between 1840 and 2015. The Kalmag model is
based solely on satellite data and spans the period from
2001 to 2020. While COV-OBS.x1’s model truncation
is L = 14, a more intricate separation of field sources of
the Kalmag model allows a truncation of the main field
up to L = 20. Both models supply uncertainties.

A comparison of the uncertainties from COV-OBS.x1
and Kalmag models reveal a growing discrepancy over

the last 60 years, as shown in Fig. 2. COV-OBS.x1
uncertainties continue to decrease until 2000 and likely
underestimate the true value in recent epochs (as also
suggested by Barrois et al., 2018). We assume that the
larger and nearly constant Kalmag uncertainties pro-
vide a more realistic value. COV-OBS.x1 uncertainties
lower than Kalmag values are simply set to the Kalmag
uncertainty at the year 2001 for each coefficient (blue
line in Fig. 2).

Figure 2: RMS uncertainty, evaluated at the core sur-
face, of COV-OBS.x1 (black) and Kalmag (red) trun-
cated to spherical harmonic degree L = 14. Also shown
are the corrected COV-OBS.x1 uncertainties (blue).

COV-OBS.x1 is assimilated every 5 years from the
year 1840 to 2000, while Kalmag is assimilated every 1
year from 2001 to 2020. The Kalmag model is assimi-
lated up to degree L = 18, for beyond that the uncer-
tainties are much too high and thought not to influence
the assimilation.

3 Results

We perform a set of hindcast tests with our assimila-
tion scheme. In these tests, the assimilation is stopped
at time ti before the end of available data, and the en-
semble is free to evolve up to time tf where data are
still available, allowing for a direct comparison of fore-
cast and observation. To judge the quality of the pre-
dictions we use CHAOS-6-x9 (Finlay et al., 2016) as
a reference model. Prediction errors of the ensemble
evolution are compared to predictions from a linear ex-
trapolation with the instantaneous SV estimate. We
also compare the prediction errors of previous IGRF
predictions, the case where the secular variation is zero
(nocast), and errors when using instantaneous CHAOS-
6 SV predictions

Table 1 lists the errors from hindcasts beginning at
ti = 2005 and 2010 and ending at tf = 2010 and 2015,
respectively. The table also shows the errors from our
data assimilation forecast (FC) and the extrapolation
based on the instantaneous SV at ti (I-SV) from our
ensemble.
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Table 1: Prediction errors evaluated at Earth’s surface
(RMS values) truncated to L = 8 and given in nT units
from hindcasts performed from times ti to ff . The er-
rors are calculated with respect to the CHAOS-6 model
at tf . Nocast refers to predictions in which the field re-
mains unchanged in time, therefore with zero SV. IGRF
is the prediction based on the IGRF model and its SV
at ti and C-SV is the prediction considering a linear
extrapolation based on CHAOS-6 model and its instan-
taneous SV at ti. I-SV is the same but based on the
instantaneous SV at ti from our assimilation scheme.
FC corresponds to the prediction error from the fore-
cast in tf based on the evolution of the ensemble of
dynamo models.

tf − ti 2010-2005 2015-2010
Nocast 313.00 343.78
IGRF 91.45 62.20
C-SV 49.80 45.29
I-SV 60.72 52.82
FC 98.76 103.61

The errors differ considerably when using the direct
forecast (FC) or instantaneous (I-SV) secular variation.
This indicates that the secular acceleration is too strong
in the dynamo models (also pointed out by Fournier
et al., 2015). Christensen et al. (2012) attribute field
acceleration to flow accelerations in their dynamo mod-
els. We thus speculate that flow variations happen too
fast when compared with magnetic field variations. This
is consistent with the observation that the Alfven Mach
number, the ratio of Alfvén to flow velocity, is too small
in the dynamo simulations.

All in all, predictions based on instantaneous SV
from CHAOS-6 and from our assimilation are compa-
rable and outperform previous IGRF predictions. We
decide therefore to supply our instantaneous value as a
candidate SV model for the new IGRF. We present our
model coefficients for the instantaneous SV in 2020 in
Table 2.

4 Summary and discussion

We present a candidate SV model from 2020 result-
ing from the assimilation of geomagnetic field models
spanning the past one and a half century using Parody-
PDAF. Comparisons of hindcast prediction errors show
that extrapolations based on the instantaneous SV out-
perform direct assimilation forecasts. The likely reason
are pronounced secular acceleration in the numerical dy-
namo model due to too fast flow accelerations in the dy-
namo models. In order to mitigate this effect, previous
contributions to IGRF using dynamo models have used
forecasts considering a steady flow to predict the field
in the next 5 years. However, using a steady flow within
the EnKF can lead to a severe underestimation of the

Table 2: SV coefficients and their uncertainties for 2020
in nT/yr.

` m ġm` ḣm` σ[ġm` ] σ[ḣm` ]

1 0 6.78 0.00 0.86 0.00
1 1 6.55 -24.29 1.02 1.10
2 0 -10.87 0.00 0.93 0.00
2 1 -6.67 -29.61 0.75 0.72
2 2 -2.97 -22.56 0.65 0.62
3 0 1.91 0.00 0.67 0.00
3 1 -5.79 6.52 0.54 0.59
3 2 2.62 -0.76 0.47 0.45
3 3 -12.16 0.55 0.50 0.45
4 0 -1.39 0.00 0.40 0.00
4 1 -1.62 -0.78 0.45 0.45
4 2 -5.87 6.47 0.41 0.37
4 3 5.30 3.69 0.36 0.32
4 4 -5.35 -5.22 0.33 0.35
5 0 -0.42 0.00 0.31 0.00
5 1 0.41 -0.18 0.32 0.37
5 2 -0.33 2.42 0.29 0.30
5 3 0.11 -0.51 0.29 0.28
5 4 1.52 3.25 0.22 0.22
5 5 1.71 0.40 0.24 0.28
6 0 -0.61 0.00 0.20 0.00
6 1 -0.41 -0.29 0.22 0.22
6 2 0.31 -1.66 0.23 0.22
6 3 1.45 -1.09 0.19 0.18
6 4 -1.28 0.47 0.20 0.20
6 5 -0.04 0.17 0.16 0.17
6 6 1.17 1.25 0.18 0.19
7 0 -0.19 0.00 0.12 0.00
7 1 -0.15 0.49 0.14 0.16
7 2 -0.04 0.47 0.15 0.14
7 3 0.74 -0.57 0.15 0.13
7 4 0.17 -0.19 0.14 0.13
7 5 -0.66 -1.09 0.13 0.12
7 6 -0.80 0.14 0.12 0.11
7 7 0.71 0.19 0.13 0.13
8 0 0.07 0.00 0.09 0.00
8 1 0.32 -0.43 0.10 0.10
8 2 -0.13 0.29 0.11 0.10
8 3 0.43 0.00 0.10 0.09
8 4 -0.23 0.40 0.10 0.10
8 5 0.26 -0.47 0.08 0.08
8 6 0.17 -0.30 0.08 0.09
8 7 -0.09 0.42 0.07 0.07
8 8 0.39 -0.03 0.08 0.09

field uncertainties, since the flow variability controls the
ensemble spread.
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