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This document briefly describes how our candidate secular variation model for the next 
generation of International Geomagnetic Reference Field has been constructed by a 
combined use of a data assimilation method (Ensemble-based 4-dimendional variation 
method; Liu et al., 2008; Nakano et al., 2019) and geodynamo simulation (Takahashi, 
2012; 2014). As for ‘data’, we used a series of MCM field models evaluated/provided by 
a French group (Ropp and Lesur, 2019). The task force chairs, therefore, are advised to 
refer to the associated document with the MCM models and the references therein for, 
e.g., what kind of data were used in the field modeling, their selection/rejection criteria 
and spatial coverage, the inversion schemes and their details (starting models, number of 
iterations etc.) and so on. Because our French colleagues kindly sent us their very latest 
version up to Epoch 2019.50, we think the difference between the final set of the French 
field model submitted to the task force and what we used is quite minor, if any. 
 
1. SV prediction from 2019.50 to 2025.00 
 
Data assimilation of the geomagnetic field was conducted by our En4dVar method for 10 
years from 2009.50 using the provided MCM model within that time window. The 
ensemble size was set to 960. Further MHD dynamo runs for all the ensemble members 
were conducted for another 5.50 years starting from 2019.50. The best linear 
combinations of all ensemble members for each epoch from 2019.50 through 2025.00 
yielded time-series of Gauss coefficients, 𝑝"#(𝑡), for each mode from (𝑙, 𝑚) = (1, 0) 
through (8, 8). Line fitting was applied to each time-series so as to estimate the averaged 
secular variation, 𝑎"#, during the 5.50 years; 



𝑝"#(𝑡) = 𝑎"# ⋅ (𝑡 − 𝑡0) + 𝑝"#(𝑡0), (1-1) 
 
where the time origin, 𝑡0, was set to the release instance of our data assimilation, i.e., 
2019.50. 
 Whether the line fit model in Eq. (1-1) gives a good secular variation estimate 
over the 5.50 years or not depends on each mode. For some modes, it may be necessary 
to include higher order terms such as secular acceleration in order to describe the time 
variation in concern properly. It, therefore, is necessary to diagnose the validity of the line 
fit models by examining the distribution of residuals for each mode, a part of which will 
be described in Section 5. 
 
2. Data assimilation theory: En4dVar 
 
We consider the minimization of the following cost function: 

𝑉(𝒙0) =
1
25

[𝒚8 − 𝒉8(𝒙8)];𝐑8=>
?

8@>

[𝒚8 − 𝒉8(𝒙8)], (2-1) 

where the vector 𝒙8 consists of all the state variables of the dynamo model at time 𝑡8 , 
𝒚8 denotes the observation, 𝐑8  is the covariance matrix of observation noise, and 𝒉8 
is a function which converts a state vector 𝒙8 at time 𝑡8	to observable variables for the 
comparison with 𝒚8. 𝒙8 is uniquely determined if the initial state 𝒙0 is given. Thus, 
we can define a function 𝒈8 satisfying 𝒈8(𝒙0) = 𝒉8(𝒙8). Using this function, the cost 
function in Eq. (2-1) can be rewritten as follows: 

𝑉(𝒙0) =
1
25

[𝒚8 − 𝒈8(𝒙0)];𝐑8=>
?

8@>

[𝒚8 − 𝒈8(𝒙0)], (2-2) 

The minimization of this cost function is achieved by an iterative algorithm similar to the 
four-dimensional ensemble-based variational (En4dVar) method (Liu et al., 2008). At 
𝑚-th iteration, we approximated a cost function using an ensemble of the simulation 

outputs C𝒙0:?,#
(>) , . . . , 𝒙0:?,#

(F) G. This ensemble is generated so that the ensemble mean is 

equal to the 𝑚-th estimate �̅�0,#. Now we define the following matrix 𝐗K0,# and 𝚪M8,# 
for convenience:  



𝐗K0,# =
1

√𝑁 − 1
P𝒙0,#

(>) − 𝒙Q0,# 			⋯			𝒙0,#
(F) − 𝒙Q0,#S, (2-3) 

𝚪M8,# =
1

√𝑁 − 1
T𝒈8P𝒙0,#

(>) S − 𝒈8U𝒙Q0,#V			⋯		𝒈8P𝒙0,#
(F)S − 𝒈8U𝒙Q0,#VW. (2-4) 

We approximate 𝒙0 as a linear combination of the ensemble members. This allows us 
to write 𝒙0 = 𝒙Q0,# + 𝐗K8,#𝒘, where 𝑤 consists of weight for each ensemble member. 
𝒙Q0,# is the prior mean of 𝒙0. The function 𝒈8(𝒙0) is then approximated based on the 
first-order Taylor expansion:  

𝒈8(𝒙0) ≈ 	𝒈8U𝒙Q0,#V + 𝑮8U𝒙0 − 𝒙Q0,#V ≈ 𝒈8U�̄�0,#V + 𝑮8𝐗K8,#𝒘	
≈ 	𝒈8U𝒙Q0,#V + 𝚪M8,#𝒘, 

(2-5) 

where 𝑮8 is the Jacobian of	 𝒈8	 at 𝒙Q0,#. Then we have the following function  

𝐽#(𝒘) =
𝜎#`

2 𝒘;𝒘

+
1
25

a𝒚8 − 𝒈8U𝒙Q0,#V − 𝚪M8,#𝒘b
;
𝐑8=>a𝒚8 − 𝒈8U𝒙Q0,#V

?
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− 𝚪M8,#𝒘b, 

(2-6) 

This cost function is minimized when 

𝒘c# = d5a𝚪M8,#
; 𝐑8=>𝚪M8,#b + 𝜎#

` 𝑰	
8

f
=>

5U𝚪M8,#
; 𝐑8=>[𝒚8 − 𝒈8(𝒙g)]V.

8

 (2-7) 

The (𝑚 + 1)-th estimate 𝒙Q0,#h> is then obtained as 
 

𝒙Q0,#h> = 𝒙Q0,# + 𝐗K0,#𝒘c#, (2-8) 
 
and we proceed to the next iteration. The first term of the right-hand side in Eq. (2-6) is 
added to ensure the robustness. The parameter 𝜎# is decreased at each iteration. This 
iterative application of Eq. (2-7), which is similar to the algorithm of Gu and Oliver 
(2007), minimizes Eq. (2-2) in the subspace spanned by the ensemble members (Nakano 
in preparation). 
 At the final (i.e., the 5-th) iteration, we also estimated the bias and trend 
components which correspond to model error in the dynamo model, and the following 
function is minimized: 



𝐽#(𝒘) =
𝜎#`

2 𝒘;𝒘+
1
2𝒃

;𝐏g𝒃 +
1
2𝒂

;𝐏l𝒂

+
1
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a𝒚8 − 𝒈8U𝒙Q0,#V − 𝚪M8,#𝒘 − 𝒃 − 𝑘𝒂b
;
𝐑8=>a𝒚8
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− 𝒈8U𝒙Q0,#V − 𝚪M8,#𝒘 − 𝒃 − 𝑘𝒂b, 

(2-9) 

 
where 𝒃  denotes the bias component and 𝒂  denotes the coefficient for the trend 
component. We set 𝐏l  and 𝐏g  as follows: 
 

𝐏l = 𝐏g = 10`𝐑8. (2-10) 
 

The minimization of Eq. (2-9) gives the approximate minimum of the following 
cost function: 

 

𝑉(𝒙0) =
1
25

[𝒚8 − 𝒈8(𝒙0) − 𝒃 − 𝑘𝒂];𝐑8=>
?

8@>

[𝒚8 − 𝒈8(𝒙0) − 𝒃 − 𝑘𝒂]. (2-11) 

The final estimate and prediction are obtained by the following equation: 
 

𝒈Q𝒌,𝑴 = 𝒈8U𝒙Q0,pV + ΓM8,p𝒘c#,				 (2-12) 
 
where M indicates the final step, i.e., M=5.  
 
3. Implementation: Data vector and weighing by covariance matrix 
 
The cost function in the data assimilation is a simple squared-misfit between the weighted 
sum of results from MHD ensemble members and the data vector, where no regularization 
is adopted. Let us rewrite Eq. (2-11) here with a specific form of 𝐑8; 
 

𝑉(𝒙0) =
1
25

[𝒚8 − 𝒈8(𝒙0) − 𝒂𝑘 − 𝒃];𝐑8=>
?

8@>

[𝒚8 − 𝒈8(𝒙0) − 𝒂𝑘 − 𝒃], (3-1) 

 
 



𝐑8 = s
𝛼u`𝐑v 0 0
0 𝛼wx` 𝐑w 0
0 0 𝛼wx` 𝐑x

y. (3-2) 

 
The data vector 𝒚8 consists of 𝑆"#, 𝑈"#, and 𝑊"

#, where 𝑆"# is the poloidal scalar 
potential for the geomagnetic field at the core-mantle boundary (CMB), 𝑈"# and 𝑊"

# 
are poloidal and toroidal scalar potentials for the core flow near the CMB, respectively. 
𝑘 is the time index, where 𝑘 from 1 to 𝐾 corresponds to the period from 2009.50 to 
2019.50 with the 0.25 year interval. 𝒙0 is the initial state vector of geodynamo model of 
Takahashi (2012). 𝒈8 is the operator including geodynamo simulation that generates the 
observation vector using a given initial condition, 𝒙0 . 𝐑8  is the observation error 
covariance matrix. In our assimilation scheme, we simply use 𝐑8 = 𝐑,  which is 
independent of time, since the data field model, MCM, is a quality-controlled smooth 
model. Only in the final iteration, we introduced trend and bias terms, −𝒂𝑘 − 𝒃, to help 
the numerical dynamo reduce the misfit, only for the magnetic field variations. 

In our data assimilation scheme, two types of data sets were used; 𝑆"# data came 
directly from the MCM model, 𝑈"# and 𝑊"

# were calculated by a modified method of 
Matsushima (2015) using time series of 𝑆"# . In the assimilation, we assembled data 
vectors with coefficients up to degree 14 for both 𝑆"# and (𝑈"#, 𝑊"

#). We adopted a 
simple covariance matrix for 𝑆"#  based on Lowes (1975). We assumed that degree 
dependence of the variance of Gauss coefficients is 𝜎~` ∝ (𝑙 + 1)=>. On the other hand, 
the variance of Schmidt semi-normalized poloidal and toroidal scalar potential of the core 
surface flow was assumed to be 𝜎wx` ∝ (2𝑙 + 1)/U𝑙(𝑙 + 1)V. Weights for data sets were 
controlled by the factors of 𝛼v and 𝛼wx in Eq. (3-1), where 𝐑v, 𝐑w, and 𝐑x are the 
diagonal covariance matrices with their own degree dependences based on 𝜎~` and 𝜎wx` . 
Table 1 lists the adopted values of 𝛼v and 𝛼wx through the iterations. 

 
Table 1. Weight factors for observation error covariance matrices. 

Iteration # 𝛼v (Factor for 𝜎v) [*1.4*104] 𝛼wx(Factor	for	𝜎w, 𝜎x)[*300] 
1 1.0 1.0 
2 0.2 0.2 
3 0.1 0.2 
4 0.02 0.2 
5 0.001 0.2 

  
In the final iteration of the data assimilation procedure, the adopted weights for 𝑆"# and 



(𝑈"#, 𝑊"
#), i.e. 𝛼v=>and 𝛼wx=> , are approximately 4:1, in terms of the observation errors. 

 
4. Fit to the data 
 
We evaluated how our model fits the data in terms of √𝑑𝑃, where 𝑑𝑃 is defined as 
 

𝑑𝑃 =55(𝑙 + 1) �U𝑔"#����� − 𝑔"
#
����V

`
+ Uℎ"#����� − ℎ"

#
����V

`�
#

>�

"

 (4-1) 

  
in the same manner as Whaler and Beggan (2015). 𝑔"#�����  and 𝑔"#���� are Gauss 
coefficients for the assimilated MHD dynamo model and data, respectively. After the five 
iterations, √𝑑𝑃  became less than 7 nT throughout the assimilation window from 
2009.50 to 2019.50. 
 
5. Error estimates of each SV coefficient 
 
After carrying out the data assimilation, we estimated a 5-year SV candidate model by 
fitting a linear model of Eq. (1-1) to the prediction by the weighted sum of MHD ensemble 
members over the period from 2019.5 to 2025.0. We applied the same SV estimation 
procedure to every ensemble member and obtained 960 SV models from the ensemble 
with the posterior distribution. We present the standard deviation of SV values of 960 SV 
models as the error of our SV candidate model. Figure 1 shows two examples of the 
distribution of SV values estimated for all the ensemble members. The best linear 
combination (Fit in Fig. 1) becomes identical to the mean of 960 SV candidates (Ens Ave 
in Fig. 1) when the posterior distribution is adopted.  



 

Figure 1. Histogram of 𝑎"# in Eq. (1-1) estimated for all the 960 ensemble members. 
Examples for 𝑔>0 (left) and 𝑔`0 (right). 
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