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Motivation: Surface Charging

• All satellites, in all orbits, have 
surfaces which charge in 
response to the space plasma p p p
environment.  
– Space plasma environment 

defined here as 10 ev < E < 30 
keV.  

• Because differential charging 
carries an associated discharge 
risk, all satellites must also 
mitigate surface charging.

• Surface charging environment 
f G O

Fennell and Mazur, 2007

Thi i f t k d ill bis fairly well-known near GEO, 
less well-known in other orbits.  
– We aim to extend our knowledge 

of the en ironment leading to

This is future work, and will be 
discussed at the NEXT
Spacecraft Charging 

Technology Conference.
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of the environment leading to 
surface charging to orbits beyond 
GEO.  

Technology Conference.  



Motivation: Surface Dose Tedlar after 3 
Year Exposure

White Tedlar after 
1 Year exposure to 
combined particle & 

• Certain sensitive satellite 
surfaces can also degrade due 
to dose accumulated from that 
same space plasma

Year Exposure
UV environment in GEO 

same space plasma 
environment. 
– Optical coatings, thin films, and 

thermal control surfaces Tedlar samples were white before exposure
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thermal control surfaces.
• The plasma environment 

leading to surface dose is fairly 
well-known near GEO

Tedlar samples were white before exposure
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well-known near GEO 
[Thomsen et al., 2007], less 
well-known in other orbits.  
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 Posttest: Alpha = 0.54; 1 Year exposure
 Pretest: Alpha = 0.21

Change in Material Reflectance
We here present new observations 
of low energy plasma beyond GEO, 

and compare them to existing 
t d i i l d l
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measurements and empirical models 
of the surface dose environment.  

Fennell and Mazur, 2007



New observations in highly elliptical orbits: TWINS
Th NASA TWINS i i f t it (T Wid l I i N t l• The NASA TWINS mission of opportunity (Two Wide-angle Imaging Neutral-
atom Spectrometers) consists of two spacecraft in high inclination, high 
altitude orbits (7.2 RE apogee).  

• Both spacecraft have identical energetic neutral atom (ENA) imagers• Both spacecraft have identical energetic neutral atom (ENA) imagers 
provided by SwRI and in-situ plasma analyzers provided by Aerospace.  

• This paper will present preliminary data from the plasma analyzers.

Reprinted with permission of 
Southwest Research Institute

FM2 HiLET/SCMFM1=DOS/SCM FM2=HiLET/SCM

SCM: Surface 
Charge Monitor

SCM: Surface 
Charge Monitor
HiLET Hi h LET
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Charge Monitor
DOS: Dosimetry
measurement. 

HiLET: High LET 
measurement



New Plasma Observations in HEO orbit
Surface Charging Monitors (SCM)

• The surface charging monitor (SCM) is a 
top-hat plasma analyzer which

Su ace C a g g o to s (SC )

– measures electrons and ions from ~10 
eV-30 keV on each TWINS vehicle
• dE/E ~ 0.17. 

– In 20 azimuthal look-directions
• Each 12° wide

– Currently 3 polar angles within 30° of C y 3 p g 30
the instrument azimuth plane.  

– Analyzer and deflector potentials 
stepped to accumulate ~2 steradianspp
of coverage every 2 seconds.  

• One significant limitation of these 
measurements is that the spacecraft 

30
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p
have no magnetometer.  



Example Observations

• One day of observations
– Electrons at top 
– Ions in middle
– L value (blue) and the 

magnitude of the 
magnetic field (green), 
b th d i d f IGRFboth derived from IGRF.  

• Two perigee passes per 
day limit observations to 
L > 5L > 5.  

• At the lowest Ls, 
observations are 
overwhelmed byoverwhelmed by 
penetrating background.  
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Previous work:  Part 1
Roeder et al., 2005
• Roeder et al., 2005 used Polar CAMMICE 

/ MICS observations to construct an 
average model of the plasma

oede et a , 005

average model of the plasma 
environment.  
– Data from March, 1996 – September, 1999.
– Energies from 1-200 keV/chargeEnergies from 1 200 keV/charge.  
– Composition: H+, He+, He++, O+, etc.
– 2 < L < 10
– All local timesAll local times.  
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Previous work:  Part 2
Th t l 2007

• Thomsen et al., 2007 used 
LANL/MPA observations to 

Thomsen et al., 2007

construct an average model of the 
plasma environment at GEO.
– Data from 1990-2004
– Ions and electrons with energies 

from 1-45 keV.  
– No ion composition.
– Geosynchronous orbit
– Aggregate all data into a mean 

energy spectrum and percentiles 
on that meanon that mean.  
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Preliminary Results:  TWINS-1 / SCM data for 1 year 

• We have taken observations from TWINS-1 / SCM from 2009 and 
aggregated it into bins similar to those used by Roeder et al., 2005.
– 4 < L < 10, 13 steps, p
– 12 steps spanning all local times
– 10 eV < E < 30 keV, 15 steps
– 0 < Equatorial Pitch Angle < 180, 18 steps.  q g , p

• Using only ion observations for these results.  
• Only using data in the azimuthal plane (polar angle = 0).
• The remainder of the slides illustrate preliminary TWINS 1 plasma• The remainder of the slides illustrate preliminary, TWINS-1 plasma 

observations compared with similar depictions of the Roeder et al., 
2005 and Thomsen et al., 2007 datasets.  
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Preliminary Results:  SCM Pitch Angle Distributions
• Pitch angle distributions derived from SCM P l CAMMICE / MICSPitch angle distributions derived from SCM 

data, without a magnetometer, qualitatively 
reproduces distributions from Polar.  
– Model magnetic field (IGRF) used to assign 

Polar CAMMICE / MICS
Roeder et al., 2005

local, compute equatorial pitch angles.
– Local pitch angles peaked at 90° for all energies, 

L’s shown
– Equatorial pitch angles at these high latitudesEquatorial pitch angles at these high latitudes 

are much nearer the loss cone.  
– Fluxes fall off with energy

• This lends confidence to the results, but 
much more validation is required
– Pitch angle assignment less reliable at high L.  
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Preliminary Results:  Spectra as a function of L
Polar CAMMICE / MICS TWINS-1 / SCMPolar CAMMICE / MICS

Roeder et al., 2005
TWINS-1 / SCM

Midnight

Dawn

NoonNoon

• SCM provides an independent measure of the 
l i t i b t f th

Dusk
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plasma environment in a subset of the 
CAMMICE / MICS database.  

• Some features are reproduced, some are not.  



Preliminary Results:  Equatorial maps
TWINS-1 / SCM
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Equatorial maps of SCM data show similar features to the 
CAMMICE/MICS maps.  



Preliminary Results:  Ion spectrum at (and beyond) GEO

• We can directly compare 
SCM spectra with LANL / 
MPA measurements over 

M
PA

LANL / MPA
Thomsen et al., 2007

the past ~1.5 solar cycles 
(Thomsen et al., 2007).  

• Though Thomsen et al., LA
N

L 
/ M

2007 has significantly better 
statistics, SCM extends 
beyond GEO.  
– A comparison can be made 

at GEO, and the radial 
dependence of the spectrum 
can be established using S

C
M

can be established using 
SCM data.  
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Summary

• We report on new observations of the plasma environment from 
~10 eV to 30 keV currently being made on two platforms in highly 
elliptic orbits (TWINS / SCM).  p ( )
– These observations will feed into empirical models of the low energy 

plasma that is directly applicable to HEO orbits, but can apply to orbits 
from GPS to beyond GEO.  

– These observations can feed into specifications of surface dose 
expected at such orbits.  

• Preliminary results are qualitatively consistent with previous state-
f f fof-the-art empirical specifications of low energy plasma in the inner 

magnetosphere [Roeder et al., 2005, Thomsen et al., 2007].  
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Future Work

• Far more verification of these preliminary results are required.  
– Verify and improve the pitch angle calculation by using more detailed, 

solar wind-driven magnetic field modelssolar wind driven magnetic field models.  
• Far more data will improve the statistics of these results, improving 

reliability and comparison with other results.  
– Include data from off the azimuth plane of the instrument increasing– Include data from off the azimuth plane of the instrument, increasing 

pitch angle coverage and statistics.   
– Include all data from TWINS-1 (late 2006-present) and TWINS-2 (mid-

2008-present).  p )
• Subtract background to improve coverage inside geosynchronous 

orbit.  
– This will be challenging.  g g

• Use TWINS / SCM data to investigate the occurrence distribution 
and magnitude of surface charging in highly elliptic orbits.  
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